Answer
Verified
454.8k+ views
Hint:
To solve this we can use the formula \[{\cos ^2}A - {\sin ^2}B = \cos \left( {A + B} \right).\cos \left( {A - B} \right)\]. Here \[A = \pi x\] and \[B = \pi y\]. So \[A - B\] will be \[\pi \left( {x - y} \right)\] substitute the value of \[x - y = \dfrac{1}{3}\] in this. In this way you will obtain the value of \[\cos \left( {A + B} \right)\]. Use \[\cos \left( {A + B} \right)\] function to arrive at the correct answer among the given options.
Complete step by step solution:
Given: \[x - y = \dfrac{1}{3}\],
\[{\cos ^2}\left( {\pi x} \right) - {\sin ^2}\left( {\pi y} \right) = \dfrac{1}{2}\]
We know that \[{\cos ^2}A - {\sin ^2}B = \cos \left( {A + B} \right).\cos \left( {A - B} \right)\] assuming \[A = \pi x\] and \[B = \pi y\] we get
\[
{\cos ^2}\left( {\pi x} \right) - {\sin ^2}\left( {\pi y} \right) = \cos \left( {\pi x + \pi y} \right)\cos \left( {\pi x - \pi y} \right) \\
\Rightarrow \dfrac{1}{2} = \cos \left[ {\pi \left( {x + y} \right)} \right]\cos \left[ {\pi \left( {x - y} \right)} \right] \\
\Rightarrow \dfrac{1}{2} = \cos \left[ {\pi \left( {x + y} \right)} \right]\cos \left[ {\pi \left( {\dfrac{1}{3}} \right)} \right] \\
\Rightarrow \cos \left[ {\pi \left( {x + y} \right)} \right] = \dfrac{1}{{\dfrac{2}{{\cos \dfrac{\pi }{3}}}}} = \dfrac{1}{{\dfrac{{\dfrac{2}{1}}}{2}}} = 1 \\
\Rightarrow \cos \left[ {\pi \left( {x + y} \right)} \right] = 1 \\
\]
Let \[x + y = n\]
Then \[\cos n\pi = 1\]
\[x - y = \dfrac{1}{3}\] (where \[n\] is an integer)
\[
\Rightarrow 2x = 2n + \dfrac{1}{3} \\
\Rightarrow x = \left( {n + \dfrac{1}{6}} \right) \\
\Rightarrow y = 2n - x = 2n - n - \dfrac{1}{6} \\
\Rightarrow y = n - \dfrac{1}{6} \\
\]
Putting
\[
\left( {x,y} \right) = \left( {x,y} \right) \equiv \left( {\dfrac{1}{6}, - \dfrac{1}{6}} \right) \\
n = 1 \\
\Rightarrow \left( {x,y} \right) = \left( {\dfrac{4}{6},\dfrac{5}{6}} \right) \\
n = 2 \\
\]
\[\Rightarrow \left( {x,y} \right) \equiv \left( {\dfrac{{13}}{6},\dfrac{{11}}{6}} \right)\] (Only this option matches)
The correct answer is option (c) \[\left( {\dfrac{{13}}{6},\dfrac{{11}}{6}} \right)\]
Note:
In multiple questions like these it might not be possible to obtain the correct solution only from the question. You may require to analyze the options to arrive at the correct answer. Similar questions might be asked that requires the knowledge of other trigonometric equations.
To solve this we can use the formula \[{\cos ^2}A - {\sin ^2}B = \cos \left( {A + B} \right).\cos \left( {A - B} \right)\]. Here \[A = \pi x\] and \[B = \pi y\]. So \[A - B\] will be \[\pi \left( {x - y} \right)\] substitute the value of \[x - y = \dfrac{1}{3}\] in this. In this way you will obtain the value of \[\cos \left( {A + B} \right)\]. Use \[\cos \left( {A + B} \right)\] function to arrive at the correct answer among the given options.
Complete step by step solution:
Given: \[x - y = \dfrac{1}{3}\],
\[{\cos ^2}\left( {\pi x} \right) - {\sin ^2}\left( {\pi y} \right) = \dfrac{1}{2}\]
We know that \[{\cos ^2}A - {\sin ^2}B = \cos \left( {A + B} \right).\cos \left( {A - B} \right)\] assuming \[A = \pi x\] and \[B = \pi y\] we get
\[
{\cos ^2}\left( {\pi x} \right) - {\sin ^2}\left( {\pi y} \right) = \cos \left( {\pi x + \pi y} \right)\cos \left( {\pi x - \pi y} \right) \\
\Rightarrow \dfrac{1}{2} = \cos \left[ {\pi \left( {x + y} \right)} \right]\cos \left[ {\pi \left( {x - y} \right)} \right] \\
\Rightarrow \dfrac{1}{2} = \cos \left[ {\pi \left( {x + y} \right)} \right]\cos \left[ {\pi \left( {\dfrac{1}{3}} \right)} \right] \\
\Rightarrow \cos \left[ {\pi \left( {x + y} \right)} \right] = \dfrac{1}{{\dfrac{2}{{\cos \dfrac{\pi }{3}}}}} = \dfrac{1}{{\dfrac{{\dfrac{2}{1}}}{2}}} = 1 \\
\Rightarrow \cos \left[ {\pi \left( {x + y} \right)} \right] = 1 \\
\]
Let \[x + y = n\]
Then \[\cos n\pi = 1\]
\[x - y = \dfrac{1}{3}\] (where \[n\] is an integer)
\[
\Rightarrow 2x = 2n + \dfrac{1}{3} \\
\Rightarrow x = \left( {n + \dfrac{1}{6}} \right) \\
\Rightarrow y = 2n - x = 2n - n - \dfrac{1}{6} \\
\Rightarrow y = n - \dfrac{1}{6} \\
\]
Putting
\[
\left( {x,y} \right) = \left( {x,y} \right) \equiv \left( {\dfrac{1}{6}, - \dfrac{1}{6}} \right) \\
n = 1 \\
\Rightarrow \left( {x,y} \right) = \left( {\dfrac{4}{6},\dfrac{5}{6}} \right) \\
n = 2 \\
\]
\[\Rightarrow \left( {x,y} \right) \equiv \left( {\dfrac{{13}}{6},\dfrac{{11}}{6}} \right)\] (Only this option matches)
The correct answer is option (c) \[\left( {\dfrac{{13}}{6},\dfrac{{11}}{6}} \right)\]
Note:
In multiple questions like these it might not be possible to obtain the correct solution only from the question. You may require to analyze the options to arrive at the correct answer. Similar questions might be asked that requires the knowledge of other trigonometric equations.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE