Answer
Verified
429.6k+ views
Hint:
To solve this we can use the formula \[{\cos ^2}A - {\sin ^2}B = \cos \left( {A + B} \right).\cos \left( {A - B} \right)\]. Here \[A = \pi x\] and \[B = \pi y\]. So \[A - B\] will be \[\pi \left( {x - y} \right)\] substitute the value of \[x - y = \dfrac{1}{3}\] in this. In this way you will obtain the value of \[\cos \left( {A + B} \right)\]. Use \[\cos \left( {A + B} \right)\] function to arrive at the correct answer among the given options.
Complete step by step solution:
Given: \[x - y = \dfrac{1}{3}\],
\[{\cos ^2}\left( {\pi x} \right) - {\sin ^2}\left( {\pi y} \right) = \dfrac{1}{2}\]
We know that \[{\cos ^2}A - {\sin ^2}B = \cos \left( {A + B} \right).\cos \left( {A - B} \right)\] assuming \[A = \pi x\] and \[B = \pi y\] we get
\[
{\cos ^2}\left( {\pi x} \right) - {\sin ^2}\left( {\pi y} \right) = \cos \left( {\pi x + \pi y} \right)\cos \left( {\pi x - \pi y} \right) \\
\Rightarrow \dfrac{1}{2} = \cos \left[ {\pi \left( {x + y} \right)} \right]\cos \left[ {\pi \left( {x - y} \right)} \right] \\
\Rightarrow \dfrac{1}{2} = \cos \left[ {\pi \left( {x + y} \right)} \right]\cos \left[ {\pi \left( {\dfrac{1}{3}} \right)} \right] \\
\Rightarrow \cos \left[ {\pi \left( {x + y} \right)} \right] = \dfrac{1}{{\dfrac{2}{{\cos \dfrac{\pi }{3}}}}} = \dfrac{1}{{\dfrac{{\dfrac{2}{1}}}{2}}} = 1 \\
\Rightarrow \cos \left[ {\pi \left( {x + y} \right)} \right] = 1 \\
\]
Let \[x + y = n\]
Then \[\cos n\pi = 1\]
\[x - y = \dfrac{1}{3}\] (where \[n\] is an integer)
\[
\Rightarrow 2x = 2n + \dfrac{1}{3} \\
\Rightarrow x = \left( {n + \dfrac{1}{6}} \right) \\
\Rightarrow y = 2n - x = 2n - n - \dfrac{1}{6} \\
\Rightarrow y = n - \dfrac{1}{6} \\
\]
Putting
\[
\left( {x,y} \right) = \left( {x,y} \right) \equiv \left( {\dfrac{1}{6}, - \dfrac{1}{6}} \right) \\
n = 1 \\
\Rightarrow \left( {x,y} \right) = \left( {\dfrac{4}{6},\dfrac{5}{6}} \right) \\
n = 2 \\
\]
\[\Rightarrow \left( {x,y} \right) \equiv \left( {\dfrac{{13}}{6},\dfrac{{11}}{6}} \right)\] (Only this option matches)
The correct answer is option (c) \[\left( {\dfrac{{13}}{6},\dfrac{{11}}{6}} \right)\]
Note:
In multiple questions like these it might not be possible to obtain the correct solution only from the question. You may require to analyze the options to arrive at the correct answer. Similar questions might be asked that requires the knowledge of other trigonometric equations.
To solve this we can use the formula \[{\cos ^2}A - {\sin ^2}B = \cos \left( {A + B} \right).\cos \left( {A - B} \right)\]. Here \[A = \pi x\] and \[B = \pi y\]. So \[A - B\] will be \[\pi \left( {x - y} \right)\] substitute the value of \[x - y = \dfrac{1}{3}\] in this. In this way you will obtain the value of \[\cos \left( {A + B} \right)\]. Use \[\cos \left( {A + B} \right)\] function to arrive at the correct answer among the given options.
Complete step by step solution:
Given: \[x - y = \dfrac{1}{3}\],
\[{\cos ^2}\left( {\pi x} \right) - {\sin ^2}\left( {\pi y} \right) = \dfrac{1}{2}\]
We know that \[{\cos ^2}A - {\sin ^2}B = \cos \left( {A + B} \right).\cos \left( {A - B} \right)\] assuming \[A = \pi x\] and \[B = \pi y\] we get
\[
{\cos ^2}\left( {\pi x} \right) - {\sin ^2}\left( {\pi y} \right) = \cos \left( {\pi x + \pi y} \right)\cos \left( {\pi x - \pi y} \right) \\
\Rightarrow \dfrac{1}{2} = \cos \left[ {\pi \left( {x + y} \right)} \right]\cos \left[ {\pi \left( {x - y} \right)} \right] \\
\Rightarrow \dfrac{1}{2} = \cos \left[ {\pi \left( {x + y} \right)} \right]\cos \left[ {\pi \left( {\dfrac{1}{3}} \right)} \right] \\
\Rightarrow \cos \left[ {\pi \left( {x + y} \right)} \right] = \dfrac{1}{{\dfrac{2}{{\cos \dfrac{\pi }{3}}}}} = \dfrac{1}{{\dfrac{{\dfrac{2}{1}}}{2}}} = 1 \\
\Rightarrow \cos \left[ {\pi \left( {x + y} \right)} \right] = 1 \\
\]
Let \[x + y = n\]
Then \[\cos n\pi = 1\]
\[x - y = \dfrac{1}{3}\] (where \[n\] is an integer)
\[
\Rightarrow 2x = 2n + \dfrac{1}{3} \\
\Rightarrow x = \left( {n + \dfrac{1}{6}} \right) \\
\Rightarrow y = 2n - x = 2n - n - \dfrac{1}{6} \\
\Rightarrow y = n - \dfrac{1}{6} \\
\]
Putting
\[
\left( {x,y} \right) = \left( {x,y} \right) \equiv \left( {\dfrac{1}{6}, - \dfrac{1}{6}} \right) \\
n = 1 \\
\Rightarrow \left( {x,y} \right) = \left( {\dfrac{4}{6},\dfrac{5}{6}} \right) \\
n = 2 \\
\]
\[\Rightarrow \left( {x,y} \right) \equiv \left( {\dfrac{{13}}{6},\dfrac{{11}}{6}} \right)\] (Only this option matches)
The correct answer is option (c) \[\left( {\dfrac{{13}}{6},\dfrac{{11}}{6}} \right)\]
Note:
In multiple questions like these it might not be possible to obtain the correct solution only from the question. You may require to analyze the options to arrive at the correct answer. Similar questions might be asked that requires the knowledge of other trigonometric equations.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE