
A solenoid of 10 Henry inductance and 2-ohm resistance, is connected to a 10-volt battery. In how much time the magnetic energy will be reached to \[1/4\text{th}\]of the maximum value.
A.3.5 sec
B.2.5 sec
C.5.5 sec
D.7.5 sec
Answer
578.1k+ views
Hint: The net magnetic field is the sum from each individual loop and is maximum in the middle of the solenoid because that point minimizes the average distance to each loop
Complete step-by-step solution:
Given,
Inductance, \[L=10\text{ H}\]
Resistance, \[r=2\text{ ohm}\]
Volt, \[V=10\text{ V}\]
Since, \[V=iR\]; where i is current
Therefore, current, \[{{i}_{o}}=\dfrac{10}{2}=5\text{A}\]
Now Maximum energy is,
\[\begin{gathered}
& {{E}_{0}}=\dfrac{1}{2}L\times {{i}_{o}} \\
& \text{ }=\dfrac{1}{2}\left( 10 \right)\times {{\left( 5 \right)}^{2}} \\
& \text{ }=125\text{ J} \\
\end{gathered}\]
Thus. \[1/4\text{th}\]of the total energy is,
\[\begin{gathered}
& E=\dfrac{1}{4}{{E}_{0}} \\
& \text{ }=\dfrac{{{E}_{0}}}{4} \\
& \text{ }=\dfrac{125}{4}\text{ J} \\
\end{gathered}\]
When \[E=\dfrac{125}{4}\text{ J}\], assume the current to be \[i\]
Now,
Current \[i\] is,
\[\begin{gathered}
& \text{ }E=\dfrac{1}{2}\times L\times {{i}^{2}} \\
& \Rightarrow \dfrac{125}{4}=\dfrac{1}{2}\times \left( 10 \right)\times {{i}^{2}} \\
& \Rightarrow \dfrac{125}{4}=5\times {{i}^{2}} \\
& \Rightarrow i=\dfrac{5}{2} \\
& \Rightarrow i=2.5\text{ A} \\
\end{gathered}\]
Now time taken to rise from 0 A to \[2.5\text{ A}\],
\[\begin{gathered}
& \text{ }i={{i}_{o}}\left[ 1-{{e}^{-Rt/L}} \right] \\
& \Rightarrow 2.5=5\left[ 1-{{e}^{-Rt/L}} \right] \\
& \Rightarrow {{e}^{-Rt/L}}=0.5 \\
& \Rightarrow \dfrac{-Rt}{L}={{\log }_{e}}\left( 0.5 \right) \\
& \Rightarrow \dfrac{Rt}{L}=0.693 \\
& \Rightarrow t=\dfrac{6.93}{2} \\
& \Rightarrow t=3.46\,\approx 3.5\text{ sec} \\
\end{gathered}\]
Hence, the correct answer is option A.
Note: while solving the formula, \[i={{i}_{o}}\left[ 1-{{e}^{-Rt/L}} \right]\] make sure that the exponential function is converted to logarithm function to make the solution easier to solve.
Complete step-by-step solution:
Given,
Inductance, \[L=10\text{ H}\]
Resistance, \[r=2\text{ ohm}\]
Volt, \[V=10\text{ V}\]
Since, \[V=iR\]; where i is current
Therefore, current, \[{{i}_{o}}=\dfrac{10}{2}=5\text{A}\]
Now Maximum energy is,
\[\begin{gathered}
& {{E}_{0}}=\dfrac{1}{2}L\times {{i}_{o}} \\
& \text{ }=\dfrac{1}{2}\left( 10 \right)\times {{\left( 5 \right)}^{2}} \\
& \text{ }=125\text{ J} \\
\end{gathered}\]
Thus. \[1/4\text{th}\]of the total energy is,
\[\begin{gathered}
& E=\dfrac{1}{4}{{E}_{0}} \\
& \text{ }=\dfrac{{{E}_{0}}}{4} \\
& \text{ }=\dfrac{125}{4}\text{ J} \\
\end{gathered}\]
When \[E=\dfrac{125}{4}\text{ J}\], assume the current to be \[i\]
Now,
Current \[i\] is,
\[\begin{gathered}
& \text{ }E=\dfrac{1}{2}\times L\times {{i}^{2}} \\
& \Rightarrow \dfrac{125}{4}=\dfrac{1}{2}\times \left( 10 \right)\times {{i}^{2}} \\
& \Rightarrow \dfrac{125}{4}=5\times {{i}^{2}} \\
& \Rightarrow i=\dfrac{5}{2} \\
& \Rightarrow i=2.5\text{ A} \\
\end{gathered}\]
Now time taken to rise from 0 A to \[2.5\text{ A}\],
\[\begin{gathered}
& \text{ }i={{i}_{o}}\left[ 1-{{e}^{-Rt/L}} \right] \\
& \Rightarrow 2.5=5\left[ 1-{{e}^{-Rt/L}} \right] \\
& \Rightarrow {{e}^{-Rt/L}}=0.5 \\
& \Rightarrow \dfrac{-Rt}{L}={{\log }_{e}}\left( 0.5 \right) \\
& \Rightarrow \dfrac{Rt}{L}=0.693 \\
& \Rightarrow t=\dfrac{6.93}{2} \\
& \Rightarrow t=3.46\,\approx 3.5\text{ sec} \\
\end{gathered}\]
Hence, the correct answer is option A.
Note: while solving the formula, \[i={{i}_{o}}\left[ 1-{{e}^{-Rt/L}} \right]\] make sure that the exponential function is converted to logarithm function to make the solution easier to solve.
Recently Updated Pages
What happens to glucose which enters nephron along class 10 biology CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

When the JanmiKudian Act was passed that granted the class 10 social science CBSE

A sector containing an angle of 120 circ is cut off class 10 maths CBSE

The sum of digits of a two digit number is 13 If t-class-10-maths-ICSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

