
A solenoid of 10 Henry inductance and 2-ohm resistance, is connected to a 10-volt battery. In how much time the magnetic energy will be reached to \[1/4\text{th}\]of the maximum value.
A.3.5 sec
B.2.5 sec
C.5.5 sec
D.7.5 sec
Answer
509.7k+ views
Hint: The net magnetic field is the sum from each individual loop and is maximum in the middle of the solenoid because that point minimizes the average distance to each loop
Complete step-by-step solution:
Given,
Inductance, \[L=10\text{ H}\]
Resistance, \[r=2\text{ ohm}\]
Volt, \[V=10\text{ V}\]
Since, \[V=iR\]; where i is current
Therefore, current, \[{{i}_{o}}=\dfrac{10}{2}=5\text{A}\]
Now Maximum energy is,
\[\begin{gathered}
& {{E}_{0}}=\dfrac{1}{2}L\times {{i}_{o}} \\
& \text{ }=\dfrac{1}{2}\left( 10 \right)\times {{\left( 5 \right)}^{2}} \\
& \text{ }=125\text{ J} \\
\end{gathered}\]
Thus. \[1/4\text{th}\]of the total energy is,
\[\begin{gathered}
& E=\dfrac{1}{4}{{E}_{0}} \\
& \text{ }=\dfrac{{{E}_{0}}}{4} \\
& \text{ }=\dfrac{125}{4}\text{ J} \\
\end{gathered}\]
When \[E=\dfrac{125}{4}\text{ J}\], assume the current to be \[i\]
Now,
Current \[i\] is,
\[\begin{gathered}
& \text{ }E=\dfrac{1}{2}\times L\times {{i}^{2}} \\
& \Rightarrow \dfrac{125}{4}=\dfrac{1}{2}\times \left( 10 \right)\times {{i}^{2}} \\
& \Rightarrow \dfrac{125}{4}=5\times {{i}^{2}} \\
& \Rightarrow i=\dfrac{5}{2} \\
& \Rightarrow i=2.5\text{ A} \\
\end{gathered}\]
Now time taken to rise from 0 A to \[2.5\text{ A}\],
\[\begin{gathered}
& \text{ }i={{i}_{o}}\left[ 1-{{e}^{-Rt/L}} \right] \\
& \Rightarrow 2.5=5\left[ 1-{{e}^{-Rt/L}} \right] \\
& \Rightarrow {{e}^{-Rt/L}}=0.5 \\
& \Rightarrow \dfrac{-Rt}{L}={{\log }_{e}}\left( 0.5 \right) \\
& \Rightarrow \dfrac{Rt}{L}=0.693 \\
& \Rightarrow t=\dfrac{6.93}{2} \\
& \Rightarrow t=3.46\,\approx 3.5\text{ sec} \\
\end{gathered}\]
Hence, the correct answer is option A.
Note: while solving the formula, \[i={{i}_{o}}\left[ 1-{{e}^{-Rt/L}} \right]\] make sure that the exponential function is converted to logarithm function to make the solution easier to solve.
Complete step-by-step solution:
Given,
Inductance, \[L=10\text{ H}\]
Resistance, \[r=2\text{ ohm}\]
Volt, \[V=10\text{ V}\]
Since, \[V=iR\]; where i is current
Therefore, current, \[{{i}_{o}}=\dfrac{10}{2}=5\text{A}\]
Now Maximum energy is,
\[\begin{gathered}
& {{E}_{0}}=\dfrac{1}{2}L\times {{i}_{o}} \\
& \text{ }=\dfrac{1}{2}\left( 10 \right)\times {{\left( 5 \right)}^{2}} \\
& \text{ }=125\text{ J} \\
\end{gathered}\]
Thus. \[1/4\text{th}\]of the total energy is,
\[\begin{gathered}
& E=\dfrac{1}{4}{{E}_{0}} \\
& \text{ }=\dfrac{{{E}_{0}}}{4} \\
& \text{ }=\dfrac{125}{4}\text{ J} \\
\end{gathered}\]
When \[E=\dfrac{125}{4}\text{ J}\], assume the current to be \[i\]
Now,
Current \[i\] is,
\[\begin{gathered}
& \text{ }E=\dfrac{1}{2}\times L\times {{i}^{2}} \\
& \Rightarrow \dfrac{125}{4}=\dfrac{1}{2}\times \left( 10 \right)\times {{i}^{2}} \\
& \Rightarrow \dfrac{125}{4}=5\times {{i}^{2}} \\
& \Rightarrow i=\dfrac{5}{2} \\
& \Rightarrow i=2.5\text{ A} \\
\end{gathered}\]
Now time taken to rise from 0 A to \[2.5\text{ A}\],
\[\begin{gathered}
& \text{ }i={{i}_{o}}\left[ 1-{{e}^{-Rt/L}} \right] \\
& \Rightarrow 2.5=5\left[ 1-{{e}^{-Rt/L}} \right] \\
& \Rightarrow {{e}^{-Rt/L}}=0.5 \\
& \Rightarrow \dfrac{-Rt}{L}={{\log }_{e}}\left( 0.5 \right) \\
& \Rightarrow \dfrac{Rt}{L}=0.693 \\
& \Rightarrow t=\dfrac{6.93}{2} \\
& \Rightarrow t=3.46\,\approx 3.5\text{ sec} \\
\end{gathered}\]
Hence, the correct answer is option A.
Note: while solving the formula, \[i={{i}_{o}}\left[ 1-{{e}^{-Rt/L}} \right]\] make sure that the exponential function is converted to logarithm function to make the solution easier to solve.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Gautam Buddha was born in the year A581 BC B563 BC class 10 social science CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE
