A smooth uniform string of natural length l, cross – sectional area A and Young’s modulus Y is pulled along its length by a force F on a horizontal surface. If the elastic potential energy stored in the string is $U = \dfrac{{{F^2}l}}{{xAY}}$, Find x.
Answer
Verified
478.5k+ views
Hint: According to Mohr’s Law,
$Y = \dfrac{{Stress}}{{Strain}}$
Elastic Potential Energy is given by the formula,
$U = \int {dW} $
Complete step by step solution:
It is given in the question that,
Natural length of the string is l
Cross – sectional area of the string is A
Young’s Modulus of the string is Y
Force acting on the string is F
According to Mohr’s Law,
$Y = \dfrac{{Stress}}{{Strain}}$ ……….(1)
Where,
Y is the Young’s Modulus
Also,
$Stress = \dfrac{F}{A}$
Where,
F is the Tension in the String
And,
\[Strain = \dfrac{{\Delta l}}{l}\]
Inserting the values of stress and strain in equation 1,
We get,
$ = > Y = \dfrac{{\dfrac{F}{A}}}{{\dfrac{{\Delta l}}{l}}}$
$ = > Y = \dfrac{{Fl}}{{A\Delta l}}$
$ = > F = \dfrac{{YA\Delta l}}{l}$ ……..(2)
Elastic Potential Energy is given by the formula,
$U = \int {dW} $
Where dW is the work done
In the above formula,
$dW = F.dx$
Where,
dx is the change in length of the string due to the applied tension
Inserting the value of dW in above equation,
We get,
$ = > U = \int {F.dx} $
Inserting the value of F in the above equation and the limits would be from 0 to $\Delta l$ (Since, initially the string was unstretched so initial limit is 0 and finally the string is stretch by $\Delta l$ so the final limit is $\Delta l$)
We get,
$ = > U = \int\limits_0^{\Delta l} {\dfrac{{YAx}}{l}.dx} $
$ = > U = \dfrac{{YA}}{l}\int\limits_0^{\Delta l} {x.dx} $
$ = > U = \dfrac{{YA}}{l}[\dfrac{{{x^2}}}{2}]_0^{\Delta l}$
$ = > U = \dfrac{{YA}}{l}\dfrac{{{{(\Delta l)}^2}}}{2}$ …………(3)
From Equation 2,
$ = > F = \dfrac{{YA\Delta l}}{l}$
$ = > \Delta l = \dfrac{{Fl}}{{AY}}$
Inserting the value of $\Delta l$ in Equation 3,
We get,
$ = > U = \dfrac{{YA}}{l}\dfrac{{{{(\dfrac{{Fl}}{{AY}})}^2}}}{2}$
$ = > U = \dfrac{{{F^2}l}}{{2AY}}$
Comparing the above equation with the one given in the question,
$ = > U = \dfrac{{{F^2}l}}{{2AY}} = \dfrac{{{F^2}l}}{{xAY}}$
Clearly, we can see from the above expression that,
$x = 2$
Note: Such types of questions are categorized into tricky sections. One requires in-depth knowledge of mechanics and calculus in order to solve such Calculation Intensive Problems.
$Y = \dfrac{{Stress}}{{Strain}}$
Elastic Potential Energy is given by the formula,
$U = \int {dW} $
Complete step by step solution:
It is given in the question that,
Natural length of the string is l
Cross – sectional area of the string is A
Young’s Modulus of the string is Y
Force acting on the string is F
According to Mohr’s Law,
$Y = \dfrac{{Stress}}{{Strain}}$ ……….(1)
Where,
Y is the Young’s Modulus
Also,
$Stress = \dfrac{F}{A}$
Where,
F is the Tension in the String
And,
\[Strain = \dfrac{{\Delta l}}{l}\]
Inserting the values of stress and strain in equation 1,
We get,
$ = > Y = \dfrac{{\dfrac{F}{A}}}{{\dfrac{{\Delta l}}{l}}}$
$ = > Y = \dfrac{{Fl}}{{A\Delta l}}$
$ = > F = \dfrac{{YA\Delta l}}{l}$ ……..(2)
Elastic Potential Energy is given by the formula,
$U = \int {dW} $
Where dW is the work done
In the above formula,
$dW = F.dx$
Where,
dx is the change in length of the string due to the applied tension
Inserting the value of dW in above equation,
We get,
$ = > U = \int {F.dx} $
Inserting the value of F in the above equation and the limits would be from 0 to $\Delta l$ (Since, initially the string was unstretched so initial limit is 0 and finally the string is stretch by $\Delta l$ so the final limit is $\Delta l$)
We get,
$ = > U = \int\limits_0^{\Delta l} {\dfrac{{YAx}}{l}.dx} $
$ = > U = \dfrac{{YA}}{l}\int\limits_0^{\Delta l} {x.dx} $
$ = > U = \dfrac{{YA}}{l}[\dfrac{{{x^2}}}{2}]_0^{\Delta l}$
$ = > U = \dfrac{{YA}}{l}\dfrac{{{{(\Delta l)}^2}}}{2}$ …………(3)
From Equation 2,
$ = > F = \dfrac{{YA\Delta l}}{l}$
$ = > \Delta l = \dfrac{{Fl}}{{AY}}$
Inserting the value of $\Delta l$ in Equation 3,
We get,
$ = > U = \dfrac{{YA}}{l}\dfrac{{{{(\dfrac{{Fl}}{{AY}})}^2}}}{2}$
$ = > U = \dfrac{{{F^2}l}}{{2AY}}$
Comparing the above equation with the one given in the question,
$ = > U = \dfrac{{{F^2}l}}{{2AY}} = \dfrac{{{F^2}l}}{{xAY}}$
Clearly, we can see from the above expression that,
$x = 2$
Note: Such types of questions are categorized into tricky sections. One requires in-depth knowledge of mechanics and calculus in order to solve such Calculation Intensive Problems.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
The term disaster is derived from language AGreek BArabic class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Differentiate between natural and artificial ecosy class 10 biology CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE