
A section of fixed smooth circular track of radius $R$ in the vertical plane is shown in the figure. A block is released from position $A$ and leaves the track at$B$. The radius of curvature of its trajectory just after it leaves the track at $B$ is?
$(A)R$
$(B)\dfrac{R}{4}$
$(C)\dfrac{R}{2}$
$(D)\dfrac{R}{3}$
Answer
490.2k+ views
Hint: This question is based on the concept of law of conservation of energy. We will apply the law of conservation of energy at the two points A and B, and we will get a relation between them. Also, since the block leaves at the point B, the normal force will be equal to zero.
Complete step by step answer:
In this question, we are given that the radius of the track is$R$.
For this particular geometry, we can say that,
$x = R(1 - \cos {53^o})$
On solving this, we get,
$x = 0.4R.....(1)$
We can also say that,
$y = R(1 - \cos {37^o})$
$y = 0.2R......(2)$
On applying the law of conservation of energy at the points A and B,
$mg(0.4R) = mg(0.2R) + \dfrac{1}{2}m{v^2}$
On cancelling $m$ o both the sides,
$g(0.4R) = g(0.2R) + \dfrac{1}{2}{v^2}$
On further solving, we get,
${v^2} = 0.4gR$
Since, the block leaves the block at the point B,
So, $N = 0$
$\dfrac{{m{v^2}}}{r} = mg\cos {37^o}$
$\dfrac{{m \times 0.4gR}}{r} = mg(0.8)$
On solving this further, we get,
$r = \dfrac{R}{2}$
So, the final answer is $(C)\dfrac{R}{2}$.
Additional information:
Some basic applications of the law of conservation of energy are:
1) When a car hits another car in an accident to make it move, then the transformation of energy takes place from one car to another.
2) Water is very often used to produce electricity. When water falls from the sky, the conversion of potential energy to kinetic energy takes place. This energy is then used to rotate the turbine of a generator, which is a part of the hydroelectricity setup, to produce electricity. In this particular process, the potential energy of water in a dam is converted into kinetic energy which can then be used to produce electric energy.
Note:
Circular motion is defined as the movement of a body along the circumference of a circle or its rotation along a circular field. Since the velocity vector of the object is constantly changing direction, the moving object is undergoing acceleration by a force known as the centripetal force which acts in a direction of the centre of rotation.
Complete step by step answer:
In this question, we are given that the radius of the track is$R$.
For this particular geometry, we can say that,
$x = R(1 - \cos {53^o})$
On solving this, we get,
$x = 0.4R.....(1)$
We can also say that,
$y = R(1 - \cos {37^o})$
$y = 0.2R......(2)$
On applying the law of conservation of energy at the points A and B,
$mg(0.4R) = mg(0.2R) + \dfrac{1}{2}m{v^2}$
On cancelling $m$ o both the sides,
$g(0.4R) = g(0.2R) + \dfrac{1}{2}{v^2}$
On further solving, we get,
${v^2} = 0.4gR$
Since, the block leaves the block at the point B,
So, $N = 0$
$\dfrac{{m{v^2}}}{r} = mg\cos {37^o}$
$\dfrac{{m \times 0.4gR}}{r} = mg(0.8)$
On solving this further, we get,
$r = \dfrac{R}{2}$
So, the final answer is $(C)\dfrac{R}{2}$.
Additional information:
Some basic applications of the law of conservation of energy are:
1) When a car hits another car in an accident to make it move, then the transformation of energy takes place from one car to another.
2) Water is very often used to produce electricity. When water falls from the sky, the conversion of potential energy to kinetic energy takes place. This energy is then used to rotate the turbine of a generator, which is a part of the hydroelectricity setup, to produce electricity. In this particular process, the potential energy of water in a dam is converted into kinetic energy which can then be used to produce electric energy.
Note:
Circular motion is defined as the movement of a body along the circumference of a circle or its rotation along a circular field. Since the velocity vector of the object is constantly changing direction, the moving object is undergoing acceleration by a force known as the centripetal force which acts in a direction of the centre of rotation.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

