
A relation on the set \[A = [x:\left| x \right| < 3,x \in Z]\] where \[Z\], the set of integers, is defined by \[R = [(x,y):y = \left| x \right|,x \ne - 1]\]. Then the number of elements in the power set of R is:
A. \[32\]
B.\[16\]
C.\[8\]
D.\[64\]
Answer
512.1k+ views
Hint: We find the elements of set A using the general form of elements given in the set and then define the relation R. We can write the elements of set R as the elements from A X A and exclude the value -1 from A while writing the relation R. In the end we calculate the number of elements of R which we substitute in the formula of number of elements in the power set to obtain our answer.
Complete step-by-step answer:
We have the set \[A = [x:\left| x \right| < 3,x \in Z]\]
We see all elements of the set A are such that the modulus of the element is less than 3 and the elements are from the set of integers. We can write set A in form of its elements as
\[A = [ - 2, - 1,0,1,2]\]
Now we have a relation R defined on the set A is given by \[R = [(x,y):y = \left| x \right|,x \ne - 1]\]
Where the elements of R are an ordered pair \[(x,y)\] where x belongs to set A and y is a function of x.
So, we can write \[R \subseteq A \times A\]
Now, from the condition in the relation R, \[x \ne - 1\], so we remove the element \[x = - 1\] from the set A and then write \[A \times A\]
Now the set becomes \[A = [ - 2,0,1,2]\]
So, x belongs to the set \[[ - 2,0,1,2]\]
The elements of R are given by \[R = [(x,y):y = \left| x \right|,x \ne - 1]\]
So, \[R = [( - 2,2),(0,0),(1,1),(2,2)]\]
Number of elements of R is 4,
\[\left| R \right| = 4\]
We know that number of elements of power set is given by \[\left| {P(R)} \right| = {2^{\left| R \right|}}\], where P(R) is the power set of R.
Substitute the value of \[\left| R \right| = 4\] in the formula.
\[
\left| {P(R)} \right| = {2^4} \\
\left| {P(R)} \right| = 16 \\
\]
So, the correct answer is “Option B”.
Note: Students many times get confused while writing the relation R because they think the values inside the modulus are positive so we will take pairs of only positive values but that is wrong because for ordered pair \[(x,y)\]we are taking the value x from integers in the set A.
Complete step-by-step answer:
We have the set \[A = [x:\left| x \right| < 3,x \in Z]\]
We see all elements of the set A are such that the modulus of the element is less than 3 and the elements are from the set of integers. We can write set A in form of its elements as
\[A = [ - 2, - 1,0,1,2]\]
Now we have a relation R defined on the set A is given by \[R = [(x,y):y = \left| x \right|,x \ne - 1]\]
Where the elements of R are an ordered pair \[(x,y)\] where x belongs to set A and y is a function of x.
So, we can write \[R \subseteq A \times A\]
Now, from the condition in the relation R, \[x \ne - 1\], so we remove the element \[x = - 1\] from the set A and then write \[A \times A\]
Now the set becomes \[A = [ - 2,0,1,2]\]
So, x belongs to the set \[[ - 2,0,1,2]\]
The elements of R are given by \[R = [(x,y):y = \left| x \right|,x \ne - 1]\]
So, \[R = [( - 2,2),(0,0),(1,1),(2,2)]\]
Number of elements of R is 4,
\[\left| R \right| = 4\]
We know that number of elements of power set is given by \[\left| {P(R)} \right| = {2^{\left| R \right|}}\], where P(R) is the power set of R.
Substitute the value of \[\left| R \right| = 4\] in the formula.
\[
\left| {P(R)} \right| = {2^4} \\
\left| {P(R)} \right| = 16 \\
\]
So, the correct answer is “Option B”.
Note: Students many times get confused while writing the relation R because they think the values inside the modulus are positive so we will take pairs of only positive values but that is wrong because for ordered pair \[(x,y)\]we are taking the value x from integers in the set A.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
