
A random variable $X$ takes values $0,1,2,3....$ with probability $P\left( X=x \right)=k\left( x+1 \right){{\left( \dfrac{1}{5} \right)}^{x}}$, where $k$ is a constant, then $P\left( X=0 \right)$ is equal to
$1)\text{ }7/25$
$2)\text{ 18}/25$
$3)\text{ 13}/25$
$4)\text{ 19}/25$
$5)\text{ 16}/25$
Answer
505.5k+ views
Hint: In this question we have been given with a probability function for which the random variable $X$ takes values from $0,1,2,3$ upto infinity. Based on the given probability function we have to find the value of $P\left( X=0 \right)$. We will solve this question by first finding the value of $k$. We will also use the formula of the sum of series which is $a+\left( a+d \right)r+\left( a+d \right){{r}^{2}}+...=\dfrac{a}{1-r}+\dfrac{dr}{{{\left( 1-r \right)}^{2}}}$. We will then substitute $X=0$ and get the required probability.
Complete step-by-step solution:
We have the function given to us as:
$\Rightarrow P\left( X=x \right)=k\left( x+1 \right){{\left( \dfrac{1}{5} \right)}^{x}}$
Now we know that the sum of all the probabilities of an event is $1$ therefore, we can write:
$\Rightarrow \sum\limits_{x=0}^{\infty }{P\left( X=x \right)=1}$
Now from the question we have been given that $P\left( X=x \right)=k\left( x+1 \right){{\left( \dfrac{1}{5} \right)}^{x}}$ therefore, on substituting, we get:
$\Rightarrow \sum\limits_{x=0}^{\infty }{k\left( x+1 \right){{\left( \dfrac{1}{5} \right)}^{x}}=1}$
Now since $k$ is a constant, we can take it out and write the expression as:
$\Rightarrow k\sum\limits_{x=0}^{\infty }{\left( x+1 \right){{\left( \dfrac{1}{5} \right)}^{x}}=1}$
Now on expanding the sum by substituting the values, we get:
$\Rightarrow k\left[ \left( 0+1 \right){{\left( \dfrac{1}{5} \right)}^{0}}+\left( 1+1 \right){{\left( \dfrac{1}{5} \right)}^{1}}+\left( 2+1 \right){{\left( \dfrac{1}{5} \right)}^{2}}+.... \right]=1$
On simplifying, we get:
$\Rightarrow k\left[ 1+\left( 1+1 \right){{\left( \dfrac{1}{5} \right)}^{1}}+\left( 2+1 \right){{\left( \dfrac{1}{5} \right)}^{2}}+.... \right]=1$
Now we know the formula $a+\left( a+d \right)r+\left( a+d \right){{r}^{2}}+...=\dfrac{a}{1-r}+\dfrac{dr}{{{\left( 1-r \right)}^{2}}}$therefore, on substituting $a=1$, $d=1$ and $r=\dfrac{1}{5}$, we get:
$\Rightarrow k\left[ \dfrac{1}{1-\dfrac{1}{5}}+\dfrac{1\times \dfrac{1}{5}}{{{\left( 1-\dfrac{1}{5} \right)}^{2}}} \right]=1$
On taking the lowest common multiple, we get:
\[\Rightarrow k\left[ \dfrac{1-\dfrac{1}{5}+\dfrac{1}{5}}{{{\left( 1-\dfrac{1}{5} \right)}^{2}}} \right]=1\]
on using the expansion of ${{\left( a-b \right)}^{2}}$, we get:
\[\Rightarrow k\left[ \dfrac{1-\dfrac{1}{5}+\dfrac{1}{5}}{1+\dfrac{1}{25}-\dfrac{2}{5}} \right]=1\]
On simplifying, we get:
\[\Rightarrow k\left[ \dfrac{1}{\dfrac{16}{25}} \right]=1\]
On rearranging the terms, we get:
\[\Rightarrow k\left[ \dfrac{25}{16} \right]=1\]
On transferring the terms, we get:
\[\Rightarrow k=\dfrac{16}{25}\]
Therefore, we get the probability function as:
$P\left( X=x \right)=\left( \dfrac{16}{25} \right)\left( x+1 \right){{\left( \dfrac{1}{5} \right)}^{x}}$
Now we have to find $P\left( X=0 \right)$ therefore, on substituting $x=0$, we get:
$P\left( X=0 \right)=\left( \dfrac{16}{25} \right)\left( 0+1 \right){{\left( \dfrac{1}{5} \right)}^{0}}$
On simplifying, we get:
$P\left( X=0 \right)=\dfrac{16}{25}$, which is the required solution.
Therefore, the correct answer is option $\left( 5 \right)$.
Note: It is to be noted that the general principle applied in this question is the sum of all the probabilities of an event is $1$. It is to be remembered that the total probability can never exceed $1$ neither can it be negative. The various series formulas should be remembered to convert an infinite series to a finite sum.
Complete step-by-step solution:
We have the function given to us as:
$\Rightarrow P\left( X=x \right)=k\left( x+1 \right){{\left( \dfrac{1}{5} \right)}^{x}}$
Now we know that the sum of all the probabilities of an event is $1$ therefore, we can write:
$\Rightarrow \sum\limits_{x=0}^{\infty }{P\left( X=x \right)=1}$
Now from the question we have been given that $P\left( X=x \right)=k\left( x+1 \right){{\left( \dfrac{1}{5} \right)}^{x}}$ therefore, on substituting, we get:
$\Rightarrow \sum\limits_{x=0}^{\infty }{k\left( x+1 \right){{\left( \dfrac{1}{5} \right)}^{x}}=1}$
Now since $k$ is a constant, we can take it out and write the expression as:
$\Rightarrow k\sum\limits_{x=0}^{\infty }{\left( x+1 \right){{\left( \dfrac{1}{5} \right)}^{x}}=1}$
Now on expanding the sum by substituting the values, we get:
$\Rightarrow k\left[ \left( 0+1 \right){{\left( \dfrac{1}{5} \right)}^{0}}+\left( 1+1 \right){{\left( \dfrac{1}{5} \right)}^{1}}+\left( 2+1 \right){{\left( \dfrac{1}{5} \right)}^{2}}+.... \right]=1$
On simplifying, we get:
$\Rightarrow k\left[ 1+\left( 1+1 \right){{\left( \dfrac{1}{5} \right)}^{1}}+\left( 2+1 \right){{\left( \dfrac{1}{5} \right)}^{2}}+.... \right]=1$
Now we know the formula $a+\left( a+d \right)r+\left( a+d \right){{r}^{2}}+...=\dfrac{a}{1-r}+\dfrac{dr}{{{\left( 1-r \right)}^{2}}}$therefore, on substituting $a=1$, $d=1$ and $r=\dfrac{1}{5}$, we get:
$\Rightarrow k\left[ \dfrac{1}{1-\dfrac{1}{5}}+\dfrac{1\times \dfrac{1}{5}}{{{\left( 1-\dfrac{1}{5} \right)}^{2}}} \right]=1$
On taking the lowest common multiple, we get:
\[\Rightarrow k\left[ \dfrac{1-\dfrac{1}{5}+\dfrac{1}{5}}{{{\left( 1-\dfrac{1}{5} \right)}^{2}}} \right]=1\]
on using the expansion of ${{\left( a-b \right)}^{2}}$, we get:
\[\Rightarrow k\left[ \dfrac{1-\dfrac{1}{5}+\dfrac{1}{5}}{1+\dfrac{1}{25}-\dfrac{2}{5}} \right]=1\]
On simplifying, we get:
\[\Rightarrow k\left[ \dfrac{1}{\dfrac{16}{25}} \right]=1\]
On rearranging the terms, we get:
\[\Rightarrow k\left[ \dfrac{25}{16} \right]=1\]
On transferring the terms, we get:
\[\Rightarrow k=\dfrac{16}{25}\]
Therefore, we get the probability function as:
$P\left( X=x \right)=\left( \dfrac{16}{25} \right)\left( x+1 \right){{\left( \dfrac{1}{5} \right)}^{x}}$
Now we have to find $P\left( X=0 \right)$ therefore, on substituting $x=0$, we get:
$P\left( X=0 \right)=\left( \dfrac{16}{25} \right)\left( 0+1 \right){{\left( \dfrac{1}{5} \right)}^{0}}$
On simplifying, we get:
$P\left( X=0 \right)=\dfrac{16}{25}$, which is the required solution.
Therefore, the correct answer is option $\left( 5 \right)$.
Note: It is to be noted that the general principle applied in this question is the sum of all the probabilities of an event is $1$. It is to be remembered that the total probability can never exceed $1$ neither can it be negative. The various series formulas should be remembered to convert an infinite series to a finite sum.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

