
A race track is in the form of a ring whose inner and outer circumferences are 44cm and 66cm respectively. Find the width of the track.
(a) 3.50 cm
(b) 1 cm
(c) 3.20 cm
(d) 3 cm
Answer
614.4k+ views
Hint: To specify a figure most fundamental quantities are perimeter and area. Perimeter can be defined as the total length of the boundary of a geometrical figure. So, using this definition we can easily solve our problem.
Complete step-by-step answer:
According to this problem, we are given that the circumferences of inner and outer radii of a race track in the form of a ring are 44cm and 66cm respectively. Let the outer radius be R and the inner radius be r of the circular race track.
Circumference of outer circle$=2\pi R=66cm$
$R=\dfrac{66}{2\pi }$
Circumference of inner circle$=2\pi r=44cm$.
$r=\dfrac{44}{2\pi }$
Now, the width of the circular track can be expressed as the difference of outer radius and inner radius of the track.
Width of circular track = R – r.
$\begin{align}
& =\dfrac{66}{2\pi }-\dfrac{44}{2\pi } \\
& =\dfrac{66-44}{2\pi } \\
& =\dfrac{22}{2\pi } \\
& =\dfrac{11}{\pi }cm \\
\end{align}$
By putting the value of $\pi $, the width of the circular track $=\dfrac{11}{3.14}=3.50m$.
Hence, the width of the circular track is 3.50 m.
Therefore, option (a) is correct.
Note: The key concept involved in solving this problem is the knowledge of circumference of a circle. This is a direct question and can be solved by using the difference of outer radius and inner radius of track. This problem is helpful in solving complex problems.
Complete step-by-step answer:
According to this problem, we are given that the circumferences of inner and outer radii of a race track in the form of a ring are 44cm and 66cm respectively. Let the outer radius be R and the inner radius be r of the circular race track.
Circumference of outer circle$=2\pi R=66cm$
$R=\dfrac{66}{2\pi }$
Circumference of inner circle$=2\pi r=44cm$.
$r=\dfrac{44}{2\pi }$
Now, the width of the circular track can be expressed as the difference of outer radius and inner radius of the track.
Width of circular track = R – r.
$\begin{align}
& =\dfrac{66}{2\pi }-\dfrac{44}{2\pi } \\
& =\dfrac{66-44}{2\pi } \\
& =\dfrac{22}{2\pi } \\
& =\dfrac{11}{\pi }cm \\
\end{align}$
By putting the value of $\pi $, the width of the circular track $=\dfrac{11}{3.14}=3.50m$.
Hence, the width of the circular track is 3.50 m.
Therefore, option (a) is correct.
Note: The key concept involved in solving this problem is the knowledge of circumference of a circle. This is a direct question and can be solved by using the difference of outer radius and inner radius of track. This problem is helpful in solving complex problems.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

