A quantity of 0.62gm of $N{a_2}C{O_3}.{H_2}O$ is added to $100{\text{ }}ml$ of $0.1N - {H_2}S{O_4}$ solution. The resulting solution would be
A) Acidic
B) Alkaline
C) Neutral
D) Buffer
Answer
Verified
459.3k+ views
Hint: The nature of solution depends upon the component which has a higher number of equivalents
-That means in a Solution of a alkali and acid if the acid has more number of equivalents the nature of solution will be acidic else if the alkali have more number of equivalents than the solution will be alkaline in nature
-Finally, if both of them have equal number of equivalents then the solution will be neutral in nature
Formula Used:
$Number\,of\,equivalents = \dfrac{{Given\,\,weight}}{{Equivalent\,Weight}}$
$Number\,of\,equivalents = Normality \times Volume\,in\,l$
Complete step by step solution:
The reaction occurring here is:
$N{a_2}C{O_3}.{H_2}O + {H_2}S{O_4} \to N{a_2}S{O_4} + {H_2}C{O_3} + {H_2}O$
As in the given question the molecular weight of $N{a_2}C{O_3}.{H_2}O$
Will be $M = 23 \times 2 + 12 + 3 \times 16 + 18$
$M = 142$
But for the given question we need equivalent weight which for an ionic compound is given as follow
$E = \dfrac{{Molecular\,Weight}}{{valency}}$
Hence equivalent weight of $N{a_2}C{O_3}.{H_2}O$
Will be ${E_1} = \dfrac{{124}}{2}$
${E_1} = 62$
Also given weight of $N{a_2}C{O_3}.{H_2}O$ is $0.62gm$
Number of equivalents of $N{a_2}C{O_3}.{H_2}O$ $ = \dfrac{{Given\,\,weight}}{{Equivalent\,Weight}}$
$ = \dfrac{{0.62}}{{62}}$
$ = 0.01$
Now equivalents of $0.1N - {H_2}S{O_4}$ can be calculated using the formula
$Number\,of\,equivalents = Normality \times Volume$
Converting the volume of $0.1N - {H_2}S{O_4}$ $100ml$ into litre and using it as follows
We get equivalents of $0.1N - {H_2}S{O_4}$ $ = 0.1 \times 100 \times {10^{ - 3}}$
$ = 0.01$
-As we can see that the number of equivalents of $100{\text{ }}ml$ of $0.1N - {H_2}S{O_4}$ comes out to be equal to number of equivalents of $0.62gm$ of $N{a_2}C{O_3}.{H_2}O$ we can conclude that the resulting solution would be neutral in nature hence the option ‘C’ is the correct solution for the given question.
Additional Information:
-A buffer solution resists change in its $pH$
-For an aqueous solution to be an acidic buffer in nature the solution should consist of a weak acid and its conjugate base.
-For an aqueous solution to be a basic buffer in nature the solution should consist of a weak base and its conjugate acid.
Note:
-$N{a_2}C{O_3}$ is a metal carbonate and in the given question it consist two water molecules as water of crystallization but that does not affect its strong alkaline nature which was the reason it could neutralize
${H_2}S{O_4}$ Which is a very strong acid
-Whenever an acid and base completely neutralize each other heat is evolve which is known as Heat of Neutralization
-That means in a Solution of a alkali and acid if the acid has more number of equivalents the nature of solution will be acidic else if the alkali have more number of equivalents than the solution will be alkaline in nature
-Finally, if both of them have equal number of equivalents then the solution will be neutral in nature
Formula Used:
$Number\,of\,equivalents = \dfrac{{Given\,\,weight}}{{Equivalent\,Weight}}$
$Number\,of\,equivalents = Normality \times Volume\,in\,l$
Complete step by step solution:
The reaction occurring here is:
$N{a_2}C{O_3}.{H_2}O + {H_2}S{O_4} \to N{a_2}S{O_4} + {H_2}C{O_3} + {H_2}O$
As in the given question the molecular weight of $N{a_2}C{O_3}.{H_2}O$
Will be $M = 23 \times 2 + 12 + 3 \times 16 + 18$
$M = 142$
But for the given question we need equivalent weight which for an ionic compound is given as follow
$E = \dfrac{{Molecular\,Weight}}{{valency}}$
Hence equivalent weight of $N{a_2}C{O_3}.{H_2}O$
Will be ${E_1} = \dfrac{{124}}{2}$
${E_1} = 62$
Also given weight of $N{a_2}C{O_3}.{H_2}O$ is $0.62gm$
Number of equivalents of $N{a_2}C{O_3}.{H_2}O$ $ = \dfrac{{Given\,\,weight}}{{Equivalent\,Weight}}$
$ = \dfrac{{0.62}}{{62}}$
$ = 0.01$
Now equivalents of $0.1N - {H_2}S{O_4}$ can be calculated using the formula
$Number\,of\,equivalents = Normality \times Volume$
Converting the volume of $0.1N - {H_2}S{O_4}$ $100ml$ into litre and using it as follows
We get equivalents of $0.1N - {H_2}S{O_4}$ $ = 0.1 \times 100 \times {10^{ - 3}}$
$ = 0.01$
-As we can see that the number of equivalents of $100{\text{ }}ml$ of $0.1N - {H_2}S{O_4}$ comes out to be equal to number of equivalents of $0.62gm$ of $N{a_2}C{O_3}.{H_2}O$ we can conclude that the resulting solution would be neutral in nature hence the option ‘C’ is the correct solution for the given question.
Additional Information:
-A buffer solution resists change in its $pH$
-For an aqueous solution to be an acidic buffer in nature the solution should consist of a weak acid and its conjugate base.
-For an aqueous solution to be a basic buffer in nature the solution should consist of a weak base and its conjugate acid.
Note:
-$N{a_2}C{O_3}$ is a metal carbonate and in the given question it consist two water molecules as water of crystallization but that does not affect its strong alkaline nature which was the reason it could neutralize
${H_2}S{O_4}$ Which is a very strong acid
-Whenever an acid and base completely neutralize each other heat is evolve which is known as Heat of Neutralization
Recently Updated Pages
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE