
A quadrilateral ABCD is drawn to circumscribe a circle. Prove that \[AB+CD=AD+BC\].
Answer
510.9k+ views
Hint: We will suppose a circle with center as ‘O’ which is circumscribed by quadrilateral ABCD and the quadrilateral touches the circle at four points and then we will use the property of tangents of a circle that the lengths of tangents drawn from the external points are equal.
Complete step-by-step answer:
We have been given a quadrilateral ABCD circumscribing the circle then we have to prove that \[AB+CD=AD+BC\].
Let us suppose a circle with center ‘O’ which is circumscribed by the quadrilateral ABCD and touches the circle at point P, Q, R and S.
As we know that the length of tangents drawn from the external points are equal.
Therefore,
AP=AS…..(1)
BP=BQ…..(2)
DR=DS……(3)
CR=CQ…..(4)
Now adding equation (1), (2), (3) and (4) and we get as follows:
\[AP+BP+DR+CR=AS+BQ+DR+CQ\]
On rearranging the terms we get as follows:
\[\left( AP+BP \right)+\left( DR+CR \right)=\left( AS+DS \right)+\left( BQ+CQ \right)\]
Since we can see from the figure that,
AB=AP+BP
BC=BQ+CQ
CD=CR+DR
AD=AS+SD
Using these values, we get as follows:
AB+CD=AD+BC
Therefore, the required expression is proved.
Note: Remember the point that the length of a tangent from an external point to the circle is equal. In this question without a diagram we are unable to prove the given expression. So first of all draw the diagram according to the question.
Complete step-by-step answer:
We have been given a quadrilateral ABCD circumscribing the circle then we have to prove that \[AB+CD=AD+BC\].
Let us suppose a circle with center ‘O’ which is circumscribed by the quadrilateral ABCD and touches the circle at point P, Q, R and S.

As we know that the length of tangents drawn from the external points are equal.
Therefore,
AP=AS…..(1)
BP=BQ…..(2)
DR=DS……(3)
CR=CQ…..(4)
Now adding equation (1), (2), (3) and (4) and we get as follows:
\[AP+BP+DR+CR=AS+BQ+DR+CQ\]
On rearranging the terms we get as follows:
\[\left( AP+BP \right)+\left( DR+CR \right)=\left( AS+DS \right)+\left( BQ+CQ \right)\]
Since we can see from the figure that,
AB=AP+BP
BC=BQ+CQ
CD=CR+DR
AD=AS+SD
Using these values, we get as follows:
AB+CD=AD+BC
Therefore, the required expression is proved.
Note: Remember the point that the length of a tangent from an external point to the circle is equal. In this question without a diagram we are unable to prove the given expression. So first of all draw the diagram according to the question.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What are the public facilities provided by the government? Also explain each facility

Difference between mass and weight class 10 physics CBSE

Statistics in singular sense includes A Collection class 10 maths CBSE
