
A projectile is projected with a speed $K{V_e}$ where ${V_e}$ is escape velocity and K is a constant less than one. The maximum height reached by it from the center of earth will be.
1)$\dfrac{R}{{{K^2} + 1}}$;
2) $\dfrac{R}{{{K^2} - 1}}$
3) $\dfrac{{R{K^2}}}{{1 - {K^2}}}$
4) $\dfrac{{{K^2} - 1}}{R}$
Answer
543.9k+ views
Hint: Here there is no net external force so one can apply the conservation of energy in the question. Here the total initial energy would be equal to the total final energy. Apply this method and find the height.
Complete answer:
Apply conservation of energy and solve:
${\text{Total Energy = }}KE + PE$;
Now the work done to throw a particle:
$W = F.dx$; ….(dx = r)
$ \Rightarrow $$W = F.r$; …(Here F = Force due to gravity)
$ \Rightarrow $$W = - \dfrac{{(GMm)}}{{{r^2}}}.r$;
$ \Rightarrow $$W = - \dfrac{{GMm}}{r}$;
Here the work done due to gravity is equal to the potential energy.
${U_g} = - \dfrac{{GMm}}{r}$; …(Initial P.E)
For initial kinetic energy;
$K.E = \dfrac{1}{2}m{K^2}{v_e}^2$; …(Here k is constant and ${v_e}$is escape velocity)
So the initial total energy becomes:
${\text{TE = }}\dfrac{1}{2}m{k^2}v_e^2 - \dfrac{{GMm}}{r}$;
Similarly the final total energy will become:
${\text{TE = K}}{\text{.E}} - \dfrac{{GMm}}{{r + h}}$; …(Here: h is the height above the earth’s surface)
Now according to the conservation of energy the initial energy will be equal to the final energy:
$\dfrac{1}{2}m{k^2}v_e^2 - \dfrac{{GMm}}{r}{\text{ = }}\left( {{\text{K}}{\text{.E - }}\dfrac{{GMm}}{{r + h}}} \right)$;
In the above equation for the final energy K.E will be zero :
$\dfrac{1}{2}m{k^2}v_e^2 - \dfrac{{GMm}}{r} = - \dfrac{{GMm}}{{r + h}}$;
Put the formula for escape velocity in the above equation:
${V_e} = \sqrt {2gr} $;
$ \Rightarrow $$ - \dfrac{{GMm}}{r} + \dfrac{1}{2}m{k^2} \times 2gr = - \dfrac{{GMm}}{{r + h}}$;
Simplify the above equation:
\[m{k^2}gr = \dfrac{{GMm}}{r} - \dfrac{{GMm}}{{r + h}}\];
$ \Rightarrow $\[m{k^2}gr = GMm\left( {\dfrac{1}{r} - \dfrac{1}{{r + h}}} \right)\];
Cancel out the common factors:
\[{k^2}gr = GM\left( {\dfrac{1}{r} - \dfrac{1}{{r + h}}} \right)\];
Take the LCM on the RHS;
\[{k^2}gr = GM\left( {\dfrac{1}{r} - \dfrac{1}{{r + h}}} \right)\];
$ \Rightarrow $\[{k^2}gr = GM\left( {\dfrac{{r + h - r}}{{r\left( {r + h} \right)}}} \right)\];
Simplify the equation:
\[{k^2}gr = GM\left( {\dfrac{h}{{\left( {{r^2} + hr} \right)}}} \right)\];
Take ${r^2}$out as common on the denominator on LHS.
\[{k^2}gr = GM\left( {\dfrac{h}{{{r^2}\left( {1 + \dfrac{h}{r}} \right)}}} \right)\];
$ \Rightarrow $\[{k^2}gr = \dfrac{{GM}}{{{r^2}}}\left( {\dfrac{h}{{\left( {1 + \dfrac{h}{r}} \right)}}} \right)\];
Here$g = \dfrac{{GM}}{{{r^2}}}$;
$ \Rightarrow $\[{k^2}r = \left( {\dfrac{h}{{\left( {1 + \dfrac{h}{r}} \right)}}} \right)\];
$ \Rightarrow $\[{k^2}r = \dfrac{h}{{\left( {1 + \dfrac{h}{r}} \right)}}\];
Take the value on RHS in the denominator and put it in LHS:
\[{k^2}r \times \left( {1 + \dfrac{h}{r}} \right) = h\];
$ \Rightarrow $\[{k^2}r + {k^2}h = h\];
Take \[{k^2}h\]on the RHS:
\[{k^2}r = h - {k^2}h\];
$ \Rightarrow $\[{k^2}r = h\left( {1 - {k^2}} \right)\];
Solve for h:
\[\dfrac{{r{k^2}}}{{\left( {1 - {k^2}} \right)}} = h\]; …(r = R)
Option”3” is correct. The maximum height reached by it from the center of earth will be \[\dfrac{{r{k^2}}}{{\left( {1 - {k^2}} \right)}} = h\].
Note:
The process is complex so go step by step make sure there are no mistakes while simplifying the equation. Here in the final energy the kinetic energy would be equal to zero as at maximum height there is no kinetic energy.
Complete answer:
Apply conservation of energy and solve:
${\text{Total Energy = }}KE + PE$;
Now the work done to throw a particle:
$W = F.dx$; ….(dx = r)
$ \Rightarrow $$W = F.r$; …(Here F = Force due to gravity)
$ \Rightarrow $$W = - \dfrac{{(GMm)}}{{{r^2}}}.r$;
$ \Rightarrow $$W = - \dfrac{{GMm}}{r}$;
Here the work done due to gravity is equal to the potential energy.
${U_g} = - \dfrac{{GMm}}{r}$; …(Initial P.E)
For initial kinetic energy;
$K.E = \dfrac{1}{2}m{K^2}{v_e}^2$; …(Here k is constant and ${v_e}$is escape velocity)
So the initial total energy becomes:
${\text{TE = }}\dfrac{1}{2}m{k^2}v_e^2 - \dfrac{{GMm}}{r}$;
Similarly the final total energy will become:
${\text{TE = K}}{\text{.E}} - \dfrac{{GMm}}{{r + h}}$; …(Here: h is the height above the earth’s surface)
Now according to the conservation of energy the initial energy will be equal to the final energy:
$\dfrac{1}{2}m{k^2}v_e^2 - \dfrac{{GMm}}{r}{\text{ = }}\left( {{\text{K}}{\text{.E - }}\dfrac{{GMm}}{{r + h}}} \right)$;
In the above equation for the final energy K.E will be zero :
$\dfrac{1}{2}m{k^2}v_e^2 - \dfrac{{GMm}}{r} = - \dfrac{{GMm}}{{r + h}}$;
Put the formula for escape velocity in the above equation:
${V_e} = \sqrt {2gr} $;
$ \Rightarrow $$ - \dfrac{{GMm}}{r} + \dfrac{1}{2}m{k^2} \times 2gr = - \dfrac{{GMm}}{{r + h}}$;
Simplify the above equation:
\[m{k^2}gr = \dfrac{{GMm}}{r} - \dfrac{{GMm}}{{r + h}}\];
$ \Rightarrow $\[m{k^2}gr = GMm\left( {\dfrac{1}{r} - \dfrac{1}{{r + h}}} \right)\];
Cancel out the common factors:
\[{k^2}gr = GM\left( {\dfrac{1}{r} - \dfrac{1}{{r + h}}} \right)\];
Take the LCM on the RHS;
\[{k^2}gr = GM\left( {\dfrac{1}{r} - \dfrac{1}{{r + h}}} \right)\];
$ \Rightarrow $\[{k^2}gr = GM\left( {\dfrac{{r + h - r}}{{r\left( {r + h} \right)}}} \right)\];
Simplify the equation:
\[{k^2}gr = GM\left( {\dfrac{h}{{\left( {{r^2} + hr} \right)}}} \right)\];
Take ${r^2}$out as common on the denominator on LHS.
\[{k^2}gr = GM\left( {\dfrac{h}{{{r^2}\left( {1 + \dfrac{h}{r}} \right)}}} \right)\];
$ \Rightarrow $\[{k^2}gr = \dfrac{{GM}}{{{r^2}}}\left( {\dfrac{h}{{\left( {1 + \dfrac{h}{r}} \right)}}} \right)\];
Here$g = \dfrac{{GM}}{{{r^2}}}$;
$ \Rightarrow $\[{k^2}r = \left( {\dfrac{h}{{\left( {1 + \dfrac{h}{r}} \right)}}} \right)\];
$ \Rightarrow $\[{k^2}r = \dfrac{h}{{\left( {1 + \dfrac{h}{r}} \right)}}\];
Take the value on RHS in the denominator and put it in LHS:
\[{k^2}r \times \left( {1 + \dfrac{h}{r}} \right) = h\];
$ \Rightarrow $\[{k^2}r + {k^2}h = h\];
Take \[{k^2}h\]on the RHS:
\[{k^2}r = h - {k^2}h\];
$ \Rightarrow $\[{k^2}r = h\left( {1 - {k^2}} \right)\];
Solve for h:
\[\dfrac{{r{k^2}}}{{\left( {1 - {k^2}} \right)}} = h\]; …(r = R)
Option”3” is correct. The maximum height reached by it from the center of earth will be \[\dfrac{{r{k^2}}}{{\left( {1 - {k^2}} \right)}} = h\].
Note:
The process is complex so go step by step make sure there are no mistakes while simplifying the equation. Here in the final energy the kinetic energy would be equal to zero as at maximum height there is no kinetic energy.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

