
A pole is standing erect on the ground which is horizontal. The tip of the pole is tied right with a rope of $\sqrt {12} m$ to a point on the ground. if the rope is making 30° angle with the horizontal, then the height of the pole is
A. 2$\sqrt 3 $m
B. 3$\sqrt 2 $ m
C. 3m
D. $\sqrt 3 $m
Answer
591k+ views
Hint: In this question first of all make a diagram to get a visual picture of the problem, then assume the height to be H. Now use properties of the trigonometric ratios i.e. in this case Sin$\theta $=$\dfrac{{Perpendicular}}{{{\text{Hypotenuse}}}}$. This will help you to find the height (perpendicular).
Complete step-by-step answer:
Let the height of the pole be H metres
According to the question AC=$\sqrt {12} m$
We know by basic properties of trigonometric ratios that Sin$\theta $=$\dfrac{{Perpendicular}}{{{\text{Hypotenuse}}}}$
In triangle ABC,
Sin 30\[^0\]=$\dfrac{H}{{AC}}$
Sin 30\[^0\] = $\dfrac{H}{{\sqrt {12} }}$
We know that Sin 30\[^0\] = $\dfrac{1}{2}$
$\dfrac{1}{2}$=$\dfrac{H}{{\sqrt {12} }}$
H= $\dfrac{{\sqrt {12} }}{2}$
H=$\dfrac{{\sqrt {4 \times 3} }}{2}$
H=$\dfrac{{2\sqrt 3 }}{2}$
H=$\sqrt 3 $
So, the height of the triangle is $\sqrt 3 $m.
Note: The ratios of the sides of a right triangle are called trigonometric ratios. There are six trigonometric ratios, sine, cosine, tangent, cosecant, secant and cotangent. These six trigonometric ratios are abbreviated as sin, cos, tan, csc, sec, cot.
Complete step-by-step answer:
Let the height of the pole be H metres
According to the question AC=$\sqrt {12} m$
We know by basic properties of trigonometric ratios that Sin$\theta $=$\dfrac{{Perpendicular}}{{{\text{Hypotenuse}}}}$
In triangle ABC,
Sin 30\[^0\]=$\dfrac{H}{{AC}}$
Sin 30\[^0\] = $\dfrac{H}{{\sqrt {12} }}$
We know that Sin 30\[^0\] = $\dfrac{1}{2}$
$\dfrac{1}{2}$=$\dfrac{H}{{\sqrt {12} }}$
H= $\dfrac{{\sqrt {12} }}{2}$
H=$\dfrac{{\sqrt {4 \times 3} }}{2}$
H=$\dfrac{{2\sqrt 3 }}{2}$
H=$\sqrt 3 $
So, the height of the triangle is $\sqrt 3 $m.
Note: The ratios of the sides of a right triangle are called trigonometric ratios. There are six trigonometric ratios, sine, cosine, tangent, cosecant, secant and cotangent. These six trigonometric ratios are abbreviated as sin, cos, tan, csc, sec, cot.
Recently Updated Pages
The number of words can be formed from the letters class 10 maths CBSE

Least count of spring balance if spring balance has class 10 physics CBSE

Explain the political and economic causes for the revolt class 10 social science CBSE

Nagarjuna is known as the Einstein of India because class 10 social science CBSE

Prove that the line drawn from the centre of a circle class 10 maths CBSE

When a number is divided by 13 the remainder is 11 class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

