Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

A point P(x,y) moves such that [x+y+1]=[x] (where [.] denotes greatest integer function) and x(0,2), then the area represented by all the possible positions of P, is
a)2
b) 22
c) 42
d) 2

Answer
VerifiedVerified
506.1k+ views
like imagedislike image
Hint: We have the following expression: [x+y+1]=[x] (where [.] denotes greatest integer function) and x(0,2).
As we know that, the greatest integer function returns the nearest integer value. So, [1] = 1. Therefore, the expression can be written as: [x+y]=[x]1.
If a function lies in the interval (n,n+1), the value of greatest integer function is n. Since, we have the interval (0, 2), write it in the form of (n,n+1) intervals, and find the value of [x]1in those intervals. That is also equal to the value of [x+y]. Then, plot the point on the graph and find the area covered by the given function.

Complete step-by-step solution:
We are having a greatest integer function as: [x+y+1]=[x].........(1)
Since, we know that [1] = 1, we can write equation (1) as:
[x+y]+1=[x][x+y]=[x]1......(2)
As we know that, x(0,2), so we can say that 0<x<1;1x<2
Now, using the above result, we can find the value of [x]1 in the given intervals.
Case-I: When 0<x<1
So, we can write: [x]=0
Therefore,
[x]1=01=1
As we have, [x+y]=[x]1 from equation (2), so we can say that,
[x+y]=1
So, we can say that: 1x+y<0......(3)
Case-I: When 1x<2
So, we can write: [x]=1
Therefore,
[x]1=11=0
As we have, [x+y]=[x]1 from equation (2), so we can say that,
[x+y]=0
So, we can say that: 0x+y<1......(4)
So, from equation (3) and (4), we can plot a graph using the interval x(0,2) as shown below.
seo images

Hence, we need to find the area of the shaded region in the above graph. This region has four triangles of the same base and the same height.
So, the area of shaded region = 4 × area of triangle
=4×(12×base×height)=4×(12×1×1)=2 square unit
Hence, option (d) is the correct answer.

Note: The Greatest Integer function is given as: y=[x]. For all real numbers, x, the greatest integer function returns the largest integer less than or equal to x. In simple terms, it rounds off the given real number to the nearest integer.
For example:
[1]=1[2.5]=2[3]=3[8.6]=9



Latest Vedantu courses for you
Grade 10 | CBSE | SCHOOL | English
Vedantu 10 CBSE Pro Course - (2025-26)
calendar iconAcademic year 2025-26
language iconENGLISH
book iconUnlimited access till final school exam
tick
School Full course for CBSE students
PhysicsPhysics
Social scienceSocial science
ChemistryChemistry
MathsMaths
BiologyBiology
EnglishEnglish
₹41,000 (9% Off)
₹37,300 per year
Select and buy