
A point P divides the line segment joining the points A (3,-5) and B (-4,8) such that $\dfrac{AP}{PB}=\dfrac{k}{1}$ . If P lies on the line $x+y=0$ , then find the value of k.
Answer
510.9k+ views
Hint: We will use the section formula, $\left( a,b \right)=\left( \dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{2}}},\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)$ where a point $\left( a,b \right)$ divides a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ in the ratio ${{m}_{1}}:{{m}_{2}}$internally, to find the coordinate of point P. The values of point P will contain the variable k. Then we will substitute this value of P in the equation $x+y=0$, to find the value of k.
Complete step by step answer:
Here the ratio is given as $\dfrac{AP}{PB}=\dfrac{k}{1}$ which clearly implies that the point P divides the line segment joining the points A and B internally.
We know if a point $\left( a,b \right)$ divides a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ in the ratio ${{m}_{1}}:{{m}_{2}}$internally, then the coordinates of point (a,b) is given by
$\left( a,b \right)=\left( \dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{2}}},\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)\text{ }\ldots \left( i \right)$
If a point P (a,b) divides the line segment with coordinates A (3,-5) and B (-4,8) in the ratio k:1, then substituting these values in equation (i), we get
$\begin{align}
& \left( a,b \right)=\left( \dfrac{k(-4)+1\cdot 3}{k+1},\dfrac{k\cdot 8+1(-5)}{k+1} \right) \\
& \left( a,b \right)=\left( \dfrac{-4k+3}{k+1},\dfrac{8k-5}{k+1} \right)
\end{align}$
It is given that the point P lies on the line $x+y=0$
This means that the coordinates of point P satisfy the equation $x+y=0$
Substituting the value of (a,b) in this equation, we get
$\begin{align}
& \text{ }\dfrac{-4k+3}{k+1}+\dfrac{8k-5}{k+1}=0 \\
& \Rightarrow \dfrac{-4k+3+8k-5}{k+1}=0 \\
& \Rightarrow 4k-2=0 \\
& \Rightarrow 4k=2 \\
& \Rightarrow k=\dfrac{1}{2} \\
\end{align}$
So, the value of k is $\dfrac{1}{2}$.
Note: We should keep a cool mind while doing calculations to make it error free. We can use the formula $\left( a,b \right)=\left( \dfrac{{{x}_{1}}+k{{x}_{2}}}{k+1},\dfrac{{{y}_{1}}+k{{y}_{2}}}{k+1} \right)$ directly when (a,b) divides a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ in the ratio k:1.
Complete step by step answer:
Here the ratio is given as $\dfrac{AP}{PB}=\dfrac{k}{1}$ which clearly implies that the point P divides the line segment joining the points A and B internally.
We know if a point $\left( a,b \right)$ divides a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ in the ratio ${{m}_{1}}:{{m}_{2}}$internally, then the coordinates of point (a,b) is given by
$\left( a,b \right)=\left( \dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{2}}},\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)\text{ }\ldots \left( i \right)$
If a point P (a,b) divides the line segment with coordinates A (3,-5) and B (-4,8) in the ratio k:1, then substituting these values in equation (i), we get
$\begin{align}
& \left( a,b \right)=\left( \dfrac{k(-4)+1\cdot 3}{k+1},\dfrac{k\cdot 8+1(-5)}{k+1} \right) \\
& \left( a,b \right)=\left( \dfrac{-4k+3}{k+1},\dfrac{8k-5}{k+1} \right)
\end{align}$
It is given that the point P lies on the line $x+y=0$
This means that the coordinates of point P satisfy the equation $x+y=0$
Substituting the value of (a,b) in this equation, we get
$\begin{align}
& \text{ }\dfrac{-4k+3}{k+1}+\dfrac{8k-5}{k+1}=0 \\
& \Rightarrow \dfrac{-4k+3+8k-5}{k+1}=0 \\
& \Rightarrow 4k-2=0 \\
& \Rightarrow 4k=2 \\
& \Rightarrow k=\dfrac{1}{2} \\
\end{align}$
So, the value of k is $\dfrac{1}{2}$.
Note: We should keep a cool mind while doing calculations to make it error free. We can use the formula $\left( a,b \right)=\left( \dfrac{{{x}_{1}}+k{{x}_{2}}}{k+1},\dfrac{{{y}_{1}}+k{{y}_{2}}}{k+1} \right)$ directly when (a,b) divides a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ in the ratio k:1.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

What is the function of copulatory pads in the forelimbs class 11 biology CBSE
