
A point P divides the line segment joining the points A (3,-5) and B (-4,8) such that $\dfrac{AP}{PB}=\dfrac{k}{1}$ . If P lies on the line $x+y=0$ , then find the value of k.
Answer
575.7k+ views
Hint: We will use the section formula, $\left( a,b \right)=\left( \dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{2}}},\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)$ where a point $\left( a,b \right)$ divides a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ in the ratio ${{m}_{1}}:{{m}_{2}}$internally, to find the coordinate of point P. The values of point P will contain the variable k. Then we will substitute this value of P in the equation $x+y=0$, to find the value of k.
Complete step by step answer:
Here the ratio is given as $\dfrac{AP}{PB}=\dfrac{k}{1}$ which clearly implies that the point P divides the line segment joining the points A and B internally.
We know if a point $\left( a,b \right)$ divides a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ in the ratio ${{m}_{1}}:{{m}_{2}}$internally, then the coordinates of point (a,b) is given by
$\left( a,b \right)=\left( \dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{2}}},\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)\text{ }\ldots \left( i \right)$
If a point P (a,b) divides the line segment with coordinates A (3,-5) and B (-4,8) in the ratio k:1, then substituting these values in equation (i), we get
$\begin{align}
& \left( a,b \right)=\left( \dfrac{k(-4)+1\cdot 3}{k+1},\dfrac{k\cdot 8+1(-5)}{k+1} \right) \\
& \left( a,b \right)=\left( \dfrac{-4k+3}{k+1},\dfrac{8k-5}{k+1} \right)
\end{align}$
It is given that the point P lies on the line $x+y=0$
This means that the coordinates of point P satisfy the equation $x+y=0$
Substituting the value of (a,b) in this equation, we get
$\begin{align}
& \text{ }\dfrac{-4k+3}{k+1}+\dfrac{8k-5}{k+1}=0 \\
& \Rightarrow \dfrac{-4k+3+8k-5}{k+1}=0 \\
& \Rightarrow 4k-2=0 \\
& \Rightarrow 4k=2 \\
& \Rightarrow k=\dfrac{1}{2} \\
\end{align}$
So, the value of k is $\dfrac{1}{2}$.
Note: We should keep a cool mind while doing calculations to make it error free. We can use the formula $\left( a,b \right)=\left( \dfrac{{{x}_{1}}+k{{x}_{2}}}{k+1},\dfrac{{{y}_{1}}+k{{y}_{2}}}{k+1} \right)$ directly when (a,b) divides a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ in the ratio k:1.
Complete step by step answer:
Here the ratio is given as $\dfrac{AP}{PB}=\dfrac{k}{1}$ which clearly implies that the point P divides the line segment joining the points A and B internally.
We know if a point $\left( a,b \right)$ divides a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ in the ratio ${{m}_{1}}:{{m}_{2}}$internally, then the coordinates of point (a,b) is given by
$\left( a,b \right)=\left( \dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{2}}},\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)\text{ }\ldots \left( i \right)$
If a point P (a,b) divides the line segment with coordinates A (3,-5) and B (-4,8) in the ratio k:1, then substituting these values in equation (i), we get
$\begin{align}
& \left( a,b \right)=\left( \dfrac{k(-4)+1\cdot 3}{k+1},\dfrac{k\cdot 8+1(-5)}{k+1} \right) \\
& \left( a,b \right)=\left( \dfrac{-4k+3}{k+1},\dfrac{8k-5}{k+1} \right)
\end{align}$
It is given that the point P lies on the line $x+y=0$
This means that the coordinates of point P satisfy the equation $x+y=0$
Substituting the value of (a,b) in this equation, we get
$\begin{align}
& \text{ }\dfrac{-4k+3}{k+1}+\dfrac{8k-5}{k+1}=0 \\
& \Rightarrow \dfrac{-4k+3+8k-5}{k+1}=0 \\
& \Rightarrow 4k-2=0 \\
& \Rightarrow 4k=2 \\
& \Rightarrow k=\dfrac{1}{2} \\
\end{align}$
So, the value of k is $\dfrac{1}{2}$.
Note: We should keep a cool mind while doing calculations to make it error free. We can use the formula $\left( a,b \right)=\left( \dfrac{{{x}_{1}}+k{{x}_{2}}}{k+1},\dfrac{{{y}_{1}}+k{{y}_{2}}}{k+1} \right)$ directly when (a,b) divides a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ in the ratio k:1.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

