
A particle is oscillating as given by \[U\left( y \right) = K\left| {{y^3}} \right|\] with force constant K has amplitude A. The maximum velocity during the oscillation is proportional to:
A. To A
B. Proportional to \[{A^3}\]
C. \[\sqrt {\dfrac{{2K}}{m}{A^3}} \]
D. \[\sqrt {\dfrac{{2m}}{K}{A^3}} \]
Answer
465k+ views
Hint: The total energy can be the maximum potential energy. Therefore, express the total energy in terms of amplitude of the oscillation. The sum of the kinetic energy and the potential energy is the total energy of the particle. The particle can have the maximum velocity if the displacement from the mean position is zero.
Formula used:
Kinetic energy, \[K = \dfrac{1}{2}m{v^2}\],
where, m is the mass and v is the velocity.
Complete step by step answer:
We have given the potential of the particle, \[U\left( y \right) = K\left| {{y^3}} \right|\].The particle can have the maximum velocity if its total energy is the maximum. The total energy can be the maximum potential energy. Therefore, we can express the total energy of the particle as,
\[E = Ky_{\max }^2 = K{A^3}\] (Since \[{y_{\max }}\] is maximum oscillation that is the amplitude of the particle)
We know that the sum of the kinetic energy and the potential energy is the total energy of the particle. Therefore, we can write,
\[\dfrac{1}{2}m{v^2} + K{y^3} = K{A^3}\]
\[ \Rightarrow \dfrac{1}{2}m{v^2} = K\left( {{A^3} - {y^3}} \right)\]
\[ \Rightarrow {v^2} = \dfrac{{2K}}{m}\left( {{A^3} - {y^3}} \right)\]
The particle can have the maximum velocity if \[y = 0\] that is the mean position of the particle. Therefore, substituting \[y = 0\] in the above equation, we get,
\[v_{\max }^2 = \dfrac{{2K}}{m}{A^3}\]
\[ \therefore {v_{\max }} = \sqrt {\dfrac{{2K}}{m}{A^3}} \]
So, the correct answer is option C.
Note:As we know, in SHM, the potential energy of the particle is \[\dfrac{1}{2}k{x^2}\], where, x is the displacement on the particle from the mean position. Since the potential energy is proportional the \[{x^2}\], the total energy is proportional to \[{A^2}\], where, A is the amplitude of the oscillations. In the given question, since the potential energy is proportional to \[{y^3}\], the total energy should also be proportional to the \[{A^3}\].
Formula used:
Kinetic energy, \[K = \dfrac{1}{2}m{v^2}\],
where, m is the mass and v is the velocity.
Complete step by step answer:
We have given the potential of the particle, \[U\left( y \right) = K\left| {{y^3}} \right|\].The particle can have the maximum velocity if its total energy is the maximum. The total energy can be the maximum potential energy. Therefore, we can express the total energy of the particle as,
\[E = Ky_{\max }^2 = K{A^3}\] (Since \[{y_{\max }}\] is maximum oscillation that is the amplitude of the particle)
We know that the sum of the kinetic energy and the potential energy is the total energy of the particle. Therefore, we can write,
\[\dfrac{1}{2}m{v^2} + K{y^3} = K{A^3}\]
\[ \Rightarrow \dfrac{1}{2}m{v^2} = K\left( {{A^3} - {y^3}} \right)\]
\[ \Rightarrow {v^2} = \dfrac{{2K}}{m}\left( {{A^3} - {y^3}} \right)\]
The particle can have the maximum velocity if \[y = 0\] that is the mean position of the particle. Therefore, substituting \[y = 0\] in the above equation, we get,
\[v_{\max }^2 = \dfrac{{2K}}{m}{A^3}\]
\[ \therefore {v_{\max }} = \sqrt {\dfrac{{2K}}{m}{A^3}} \]
So, the correct answer is option C.
Note:As we know, in SHM, the potential energy of the particle is \[\dfrac{1}{2}k{x^2}\], where, x is the displacement on the particle from the mean position. Since the potential energy is proportional the \[{x^2}\], the total energy is proportional to \[{A^2}\], where, A is the amplitude of the oscillations. In the given question, since the potential energy is proportional to \[{y^3}\], the total energy should also be proportional to the \[{A^3}\].
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
