
A particle executes simple harmonic motion and is located at $ x = a,b $ and $ c $ at times $ {t_{0,}}2{t_0} $ and $ 3{t_0} $ respectively. The frequency of the oscillation is
(A) $ \dfrac{1}{{2\pi {t_0}}}{\cos ^{ - 1}}\left( {\dfrac{{2a + 3c}}{b}} \right) $
(B) $ \dfrac{1}{{2\pi {t_0}}}{\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2b}}} \right) $
(C) $ \dfrac{1}{{2\pi {t_0}}}{\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2c}}} \right) $
(D) $ \dfrac{1}{{2\pi {t_0}}}{\cos ^{ - 1}}\left( {\dfrac{{a + 2b}}{{2c}}} \right) $
Answer
539.4k+ views
Hint : to solve this problem we should know about simple harmonic motion. The general SHM equation applies to all simple oscillating motion is,
$ x = {x_0}\cos (\omega t) $
Here, $ {x_0} $ is the amplitude of the SHM and $ \omega $ is the angular frequency of the SHM.
Complete Step By Step Answer:
A particle executes simple harmonic motion having $ A $ is amplitude of SHM and $ \omega $ is angular frequency of the SHM.
As per location given in question. Equation of simple harmonic motion will be at $ x = a,b $ and $ c $ at given time $ {t_{0,}}2{t_0} $ and $ 3{t_0} $ will be respectively,
$ a = A\cos \omega {t_0} $ ………………………… $ (1) $
$ b = A\cos 2\omega {t_0} $ ………………………… $ (2) $
$ c = A\cos 3\omega {t_0} $ ………………………… $ (3) $
On adding $ (1) $ and $ (3) $ . We get,
$ a + c = A(\cos \omega {t_0} + \cos 3\omega {t_0}) $
By applying a trigonometric equation.
$ \Rightarrow a + c = 2A\left( {\cos \left( {\dfrac{{3\omega {t_0} + \omega {t_0}}}{2}} \right)\cos \left( {\dfrac{{3\omega {t_0} - \omega {t_0}}}{2}} \right)} \right) $
$ \Rightarrow a + c = 2A\cos 2\omega {t_0}\cos \omega {t_0} $
From $ (2) $ we get,
$ b = A\cos 2\omega {t_0} $
$ \Rightarrow a + c = 2b\cos \omega {t_0} $
By taking the inverse. We get,
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2b}}} \right) = \omega {t_0} $
As we know $ \omega = 2\pi f $ . So,
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2b}}} \right) = 2\pi f{t_0} $
$ \Rightarrow f = \dfrac{1}{{2\pi {t_0}}}{\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2b}}} \right) $
Hence, (b) $ \dfrac{1}{{2\pi {t_0}}}{\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2b}}} \right) $ is correct option.
Note :
In simple harmonic motion particles oscillate about their mean position about which particle is to its to and for motion. In simple harmonic motion distance is directly proportional to acceleration of the particle. The maximum kinetic energy of a particle is at mean position and maximum potential energy is at maximum position and vice-versa.
$ x = {x_0}\cos (\omega t) $
Here, $ {x_0} $ is the amplitude of the SHM and $ \omega $ is the angular frequency of the SHM.
Complete Step By Step Answer:
A particle executes simple harmonic motion having $ A $ is amplitude of SHM and $ \omega $ is angular frequency of the SHM.
As per location given in question. Equation of simple harmonic motion will be at $ x = a,b $ and $ c $ at given time $ {t_{0,}}2{t_0} $ and $ 3{t_0} $ will be respectively,
$ a = A\cos \omega {t_0} $ ………………………… $ (1) $
$ b = A\cos 2\omega {t_0} $ ………………………… $ (2) $
$ c = A\cos 3\omega {t_0} $ ………………………… $ (3) $
On adding $ (1) $ and $ (3) $ . We get,
$ a + c = A(\cos \omega {t_0} + \cos 3\omega {t_0}) $
By applying a trigonometric equation.
$ \Rightarrow a + c = 2A\left( {\cos \left( {\dfrac{{3\omega {t_0} + \omega {t_0}}}{2}} \right)\cos \left( {\dfrac{{3\omega {t_0} - \omega {t_0}}}{2}} \right)} \right) $
$ \Rightarrow a + c = 2A\cos 2\omega {t_0}\cos \omega {t_0} $
From $ (2) $ we get,
$ b = A\cos 2\omega {t_0} $
$ \Rightarrow a + c = 2b\cos \omega {t_0} $
By taking the inverse. We get,
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2b}}} \right) = \omega {t_0} $
As we know $ \omega = 2\pi f $ . So,
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2b}}} \right) = 2\pi f{t_0} $
$ \Rightarrow f = \dfrac{1}{{2\pi {t_0}}}{\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2b}}} \right) $
Hence, (b) $ \dfrac{1}{{2\pi {t_0}}}{\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2b}}} \right) $ is correct option.
Note :
In simple harmonic motion particles oscillate about their mean position about which particle is to its to and for motion. In simple harmonic motion distance is directly proportional to acceleration of the particle. The maximum kinetic energy of a particle is at mean position and maximum potential energy is at maximum position and vice-versa.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

