
A particle executes simple harmonic motion and is located at $ x = a,b $ and $ c $ at times $ {t_{0,}}2{t_0} $ and $ 3{t_0} $ respectively. The frequency of the oscillation is
(A) $ \dfrac{1}{{2\pi {t_0}}}{\cos ^{ - 1}}\left( {\dfrac{{2a + 3c}}{b}} \right) $
(B) $ \dfrac{1}{{2\pi {t_0}}}{\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2b}}} \right) $
(C) $ \dfrac{1}{{2\pi {t_0}}}{\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2c}}} \right) $
(D) $ \dfrac{1}{{2\pi {t_0}}}{\cos ^{ - 1}}\left( {\dfrac{{a + 2b}}{{2c}}} \right) $
Answer
522.9k+ views
Hint : to solve this problem we should know about simple harmonic motion. The general SHM equation applies to all simple oscillating motion is,
$ x = {x_0}\cos (\omega t) $
Here, $ {x_0} $ is the amplitude of the SHM and $ \omega $ is the angular frequency of the SHM.
Complete Step By Step Answer:
A particle executes simple harmonic motion having $ A $ is amplitude of SHM and $ \omega $ is angular frequency of the SHM.
As per location given in question. Equation of simple harmonic motion will be at $ x = a,b $ and $ c $ at given time $ {t_{0,}}2{t_0} $ and $ 3{t_0} $ will be respectively,
$ a = A\cos \omega {t_0} $ ………………………… $ (1) $
$ b = A\cos 2\omega {t_0} $ ………………………… $ (2) $
$ c = A\cos 3\omega {t_0} $ ………………………… $ (3) $
On adding $ (1) $ and $ (3) $ . We get,
$ a + c = A(\cos \omega {t_0} + \cos 3\omega {t_0}) $
By applying a trigonometric equation.
$ \Rightarrow a + c = 2A\left( {\cos \left( {\dfrac{{3\omega {t_0} + \omega {t_0}}}{2}} \right)\cos \left( {\dfrac{{3\omega {t_0} - \omega {t_0}}}{2}} \right)} \right) $
$ \Rightarrow a + c = 2A\cos 2\omega {t_0}\cos \omega {t_0} $
From $ (2) $ we get,
$ b = A\cos 2\omega {t_0} $
$ \Rightarrow a + c = 2b\cos \omega {t_0} $
By taking the inverse. We get,
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2b}}} \right) = \omega {t_0} $
As we know $ \omega = 2\pi f $ . So,
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2b}}} \right) = 2\pi f{t_0} $
$ \Rightarrow f = \dfrac{1}{{2\pi {t_0}}}{\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2b}}} \right) $
Hence, (b) $ \dfrac{1}{{2\pi {t_0}}}{\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2b}}} \right) $ is correct option.
Note :
In simple harmonic motion particles oscillate about their mean position about which particle is to its to and for motion. In simple harmonic motion distance is directly proportional to acceleration of the particle. The maximum kinetic energy of a particle is at mean position and maximum potential energy is at maximum position and vice-versa.
$ x = {x_0}\cos (\omega t) $
Here, $ {x_0} $ is the amplitude of the SHM and $ \omega $ is the angular frequency of the SHM.
Complete Step By Step Answer:
A particle executes simple harmonic motion having $ A $ is amplitude of SHM and $ \omega $ is angular frequency of the SHM.
As per location given in question. Equation of simple harmonic motion will be at $ x = a,b $ and $ c $ at given time $ {t_{0,}}2{t_0} $ and $ 3{t_0} $ will be respectively,
$ a = A\cos \omega {t_0} $ ………………………… $ (1) $
$ b = A\cos 2\omega {t_0} $ ………………………… $ (2) $
$ c = A\cos 3\omega {t_0} $ ………………………… $ (3) $
On adding $ (1) $ and $ (3) $ . We get,
$ a + c = A(\cos \omega {t_0} + \cos 3\omega {t_0}) $
By applying a trigonometric equation.
$ \Rightarrow a + c = 2A\left( {\cos \left( {\dfrac{{3\omega {t_0} + \omega {t_0}}}{2}} \right)\cos \left( {\dfrac{{3\omega {t_0} - \omega {t_0}}}{2}} \right)} \right) $
$ \Rightarrow a + c = 2A\cos 2\omega {t_0}\cos \omega {t_0} $
From $ (2) $ we get,
$ b = A\cos 2\omega {t_0} $
$ \Rightarrow a + c = 2b\cos \omega {t_0} $
By taking the inverse. We get,
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2b}}} \right) = \omega {t_0} $
As we know $ \omega = 2\pi f $ . So,
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2b}}} \right) = 2\pi f{t_0} $
$ \Rightarrow f = \dfrac{1}{{2\pi {t_0}}}{\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2b}}} \right) $
Hence, (b) $ \dfrac{1}{{2\pi {t_0}}}{\cos ^{ - 1}}\left( {\dfrac{{a + c}}{{2b}}} \right) $ is correct option.
Note :
In simple harmonic motion particles oscillate about their mean position about which particle is to its to and for motion. In simple harmonic motion distance is directly proportional to acceleration of the particle. The maximum kinetic energy of a particle is at mean position and maximum potential energy is at maximum position and vice-versa.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

