
A moving train 66 m long overtakes another train 88 m long moving in the same direction in \[0.168\min \]. If the second train is moving at 30 km/hr, at what speed is the first train moving?
A. 85 \[{\rm{km/hr}}\]
B. 50 \[{\rm{km/hr}}\]
C. 55 \[{\rm{km/hr}}\]
D. 25 \[{\rm{km/hr}}\]
Answer
540.9k+ views
Hint: Here we will find the speed of the first train by using the relative speed formula. First, we will assume the speed of the first train to be \[x\] and find the relative speed of the first train with respect to the second train. Then we will convert our all value in one unit. Finally we will use the formula of speed to get the required answer.
Complete step-by-step answer:
Let us take the speed of the first train as \[x\] \[{\rm{km/hr}}\].
The speed of second train \[ = 30{\rm{km/hr}}\]
So, the relative speed of first train with respect to second \[ = \left( {x - 30} \right){\rm{km/hr}}\]
Converting the above value in m/sec we will multiply it with \[\dfrac{5}{{18}}\]. Therefore, we get
\[ \Rightarrow \] The relative speed of first train with respect to second \[ = \left( {x - 30} \right) \times \dfrac{5}{{18}}{\rm{m/sec}}\]
Length of first train is 66 m and second train is 88 m.
So, Total distance travelled \[ = \left( {66 + 88} \right){\rm{m}} = 154{\rm{m}}\]
Time taken \[ = 0.168\min = \left( {0.168 \times 60} \right)\sec \]
Multiplying the terms, we get
\[ \Rightarrow \] Time taken \[ = 10.08\sec \]
Substituting the above values in the formula Speed \[ = \] Distance \[ \div \] Time, we get
\[\left( {x - 30} \right) \times \dfrac{5}{{18}} = \dfrac{{154}}{{10.08}}\]
Multiplying \[\dfrac{{18}}{5}\] on both the sides, we get
\[\begin{array}{l} \Rightarrow \left( {x - 30} \right) = \dfrac{{154}}{{10.08}} \times \dfrac{{18}}{5}\\ \Rightarrow \left( {x - 30} \right) = 55\end{array}\]
Adding 30 on both the sides, we get
\[ \Rightarrow x = 55 + 30\]
\[ \Rightarrow x = 85\]
So, the speed of the first train is \[85{\rm{km/hr}}\].
Hence, option (A) is correct.
Note:
“Relative” is also known as “in comparison to”. The relative speed concept is used when two or more bodies are moving with some speed considered. The relative speed of two bodies is added if they are moving in the opposite direction and subtracted if they are moving in the same direction. The speed of the moving body when considered with respect to the speed of the stationary body is known as relative speed.
Complete step-by-step answer:
Let us take the speed of the first train as \[x\] \[{\rm{km/hr}}\].
The speed of second train \[ = 30{\rm{km/hr}}\]
So, the relative speed of first train with respect to second \[ = \left( {x - 30} \right){\rm{km/hr}}\]
Converting the above value in m/sec we will multiply it with \[\dfrac{5}{{18}}\]. Therefore, we get
\[ \Rightarrow \] The relative speed of first train with respect to second \[ = \left( {x - 30} \right) \times \dfrac{5}{{18}}{\rm{m/sec}}\]
Length of first train is 66 m and second train is 88 m.
So, Total distance travelled \[ = \left( {66 + 88} \right){\rm{m}} = 154{\rm{m}}\]
Time taken \[ = 0.168\min = \left( {0.168 \times 60} \right)\sec \]
Multiplying the terms, we get
\[ \Rightarrow \] Time taken \[ = 10.08\sec \]
Substituting the above values in the formula Speed \[ = \] Distance \[ \div \] Time, we get
\[\left( {x - 30} \right) \times \dfrac{5}{{18}} = \dfrac{{154}}{{10.08}}\]
Multiplying \[\dfrac{{18}}{5}\] on both the sides, we get
\[\begin{array}{l} \Rightarrow \left( {x - 30} \right) = \dfrac{{154}}{{10.08}} \times \dfrac{{18}}{5}\\ \Rightarrow \left( {x - 30} \right) = 55\end{array}\]
Adding 30 on both the sides, we get
\[ \Rightarrow x = 55 + 30\]
\[ \Rightarrow x = 85\]
So, the speed of the first train is \[85{\rm{km/hr}}\].
Hence, option (A) is correct.
Note:
“Relative” is also known as “in comparison to”. The relative speed concept is used when two or more bodies are moving with some speed considered. The relative speed of two bodies is added if they are moving in the opposite direction and subtracted if they are moving in the same direction. The speed of the moving body when considered with respect to the speed of the stationary body is known as relative speed.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

