
A man arranges to pay off a debt of RS. \[{\text{36}}00\]by \[{\text{4}}0\] annual installments which form an A.P. When \[{\text{3}}0\] of the installments are paid, he dies leaving one - third of the debt unpaid, find the value of the first installment.
Answer
576.3k+ views
Hint:A sequence is a list of items or objects which have been arranged in a sequential way.
A series can be highly generalized as the sum of all the terms in a sequence. However, there has to be a definite relationship between all the terms of the sequence.
Arithmetic sequence
A sequence in which every term is created by adding or subtracting a definite number to the preceding number is an arithmetic sequence.
A.P
Sequence \[{\text{a}},{\text{ a }} + {\text{ d}},{\text{ a }} + {\text{ 2d}},{\text{ }}. \ldots \ldots \ldots \ldots \ldots {\text{a }} + {\text{ }}\left( {{\text{n }}-{\text{ 1}}} \right){\text{d}}\]
General term (nth term) \[{{\text{a}}_{\text{n}}} = {\text{ a }} + {\text{ }}\left( {{\text{n }}-{\text{ 1}}} \right){\text{d}}\]
Therefore,
The value of the first installment is\[{\text{51}}\].
Complete step by step answer:
Given:
Total amount of Debt, \[\]
Number of annual installments, \[n = {\text{ 4}}0\]
He paid \[{\text{3}}0\] installment and he die leaving \[\dfrac{1}{3}\] of the debt unpaid.
Unpaid amount = \[\dfrac{1}{3}{\text{ }} \times {\text{ }}3600{\text{ }} = {\text{ }}1200\]
Total payment he paid in \[{\text{3}}0\] installment,\[\]
\[{{\text{S}}_{{\text{3}}0}}{\text{ }} = {\text{ 24}}00\]
By using the formula, Sum of nth terms, \[{\text{Sn }} = {\text{ }}\dfrac{{\text{n}}}{2}{\text{ }}\left[ {{\text{2a }} + {\text{ }}\left( {{\text{n }}-{\text{ 1}}} \right){\text{ d}}} \right]\]
For \[{\text{3}}0\] installments:
\[{{\text{S}}_{{\text{3}}0}}{\text{ }} = {\text{ }}\dfrac{{{\text{3}}0}}{2}{\text{ }}\left[ {{\text{2a }} + {\text{ }}\left( {{\text{3}}0{\text{ }} - {\text{ 1}}} \right){\text{d}}} \right]\]
\[{\text{24}}00{\text{ }} = {\text{ 15 }}\left[ {{\text{2a }} + {\text{ 29d}}} \right]\]
\[\dfrac{{{\text{24}}00}}{{15}}{\text{ }} = {\text{ }}\;\left[ {{\text{2a }} + {\text{ 29d}}} \right]\]
\[{\text{16}}0{\text{ }} = {\text{ 2a }} + {\text{ 29d}}\]
\[{\text{2a }} = {\text{ 16}}0{\text{ }} - {\text{ 29d}}\]
\[{\text{2a }} + {\text{ 29d }} = {\text{ 16}}0{\text{ }} \ldots \ldots ..\left( {\text{1}} \right)\]
For \[{\text{4}}0\] installments:
\[{{\text{S}}_{{\text{4}}0}}{\text{ }} = {\text{ }}\dfrac{{{\text{4}}0}}{2}{\text{ }}\left[ {{\text{2a }} + {\text{ }}\left( {{\text{n }} - {\text{ 1}}} \right){\text{ d}}} \right]\]
\[{\text{36}}00{\text{ }} = {\text{ 2}}0{\text{ }}\left[ {{\text{2a }} + {\text{ }}\left( {{\text{4}}0{\text{ }} - {\text{1}}} \right){\text{ d}}} \right]\]
\[\dfrac{{{\text{36}}00}}{2}{\text{ }} = {\text{ 2a }} + {\text{ 39d}}\]
\[{\text{18}}0{\text{ }} = {\text{ 2a }} + {\text{ 39d}}\]
\[{\text{2a }} + {\text{ 39d }}\; = {\text{ 18}}0{\text{ }} \ldots \ldots \ldots ..\left( {\text{2}} \right)\]
On subtracting eq (i) from (ii), we get
\[{\text{2a }} + {\text{ 39d }}\; = {\text{ 18}}0\]
\[{\text{2a }} + {\text{ 29d }} = {\text{ 16}}0\]
\[\;\left( - \right){\text{ }}\;\left( - \right){\text{ }}\;{\text{ }}\;{\text{ }}\;\left( - \right)\]
-----------
\[{\text{1}}0{\text{d }} = {\text{ 2}}0\]
\[{\text{d }} = {\text{ }}\dfrac{{{\text{2}}0}}{{10}}\]
\[{\text{d }} = {\text{ 2}}\]
On Putting the value of \[d{\text{ }} = {\text{ }}2{\text{ }}in{\text{ }}eq{\text{ }}\left( 1 \right),\]
\[{\text{2a }} + {\text{ 29d }} = {\text{ 16}}0\]
\[{\text{2a }} + {\text{ 29 }}\left( {\text{2}} \right){\text{ }} = {\text{ 16}}0\]
\[{\text{2a }} + {\text{ 58 }} = {\text{ 16}}0\]
\[{\text{2a }} = {\text{ 16}}0{\text{ }} - {\text{ 58}}\]
\[{\text{2a }} = {\text{ 1}}0{\text{2}}\]
\[{\text{a }} = \dfrac{{{\text{ 1}}0{\text{2}}}}{2}\]
\[{\text{a }} = {\text{ 51}}\]
Hence, the value of the first installment is \[{\text{Rs51}}.\]
Note:
The series is finite or infinite depending on the situation whether the sequence is finite or infinite. Finite sequences and series have defined first and last, terms, whereas infinite sequences and series continue indefinitely.
A series can be highly generalized as the sum of all the terms in a sequence. However, there has to be a definite relationship between all the terms of the sequence.
Arithmetic sequence
A sequence in which every term is created by adding or subtracting a definite number to the preceding number is an arithmetic sequence.
A.P
Sequence \[{\text{a}},{\text{ a }} + {\text{ d}},{\text{ a }} + {\text{ 2d}},{\text{ }}. \ldots \ldots \ldots \ldots \ldots {\text{a }} + {\text{ }}\left( {{\text{n }}-{\text{ 1}}} \right){\text{d}}\]
General term (nth term) \[{{\text{a}}_{\text{n}}} = {\text{ a }} + {\text{ }}\left( {{\text{n }}-{\text{ 1}}} \right){\text{d}}\]
Therefore,
The value of the first installment is\[{\text{51}}\].
Complete step by step answer:
Given:
Total amount of Debt, \[\]
Number of annual installments, \[n = {\text{ 4}}0\]
He paid \[{\text{3}}0\] installment and he die leaving \[\dfrac{1}{3}\] of the debt unpaid.
Unpaid amount = \[\dfrac{1}{3}{\text{ }} \times {\text{ }}3600{\text{ }} = {\text{ }}1200\]
Total payment he paid in \[{\text{3}}0\] installment,\[\]
\[{{\text{S}}_{{\text{3}}0}}{\text{ }} = {\text{ 24}}00\]
By using the formula, Sum of nth terms, \[{\text{Sn }} = {\text{ }}\dfrac{{\text{n}}}{2}{\text{ }}\left[ {{\text{2a }} + {\text{ }}\left( {{\text{n }}-{\text{ 1}}} \right){\text{ d}}} \right]\]
For \[{\text{3}}0\] installments:
\[{{\text{S}}_{{\text{3}}0}}{\text{ }} = {\text{ }}\dfrac{{{\text{3}}0}}{2}{\text{ }}\left[ {{\text{2a }} + {\text{ }}\left( {{\text{3}}0{\text{ }} - {\text{ 1}}} \right){\text{d}}} \right]\]
\[{\text{24}}00{\text{ }} = {\text{ 15 }}\left[ {{\text{2a }} + {\text{ 29d}}} \right]\]
\[\dfrac{{{\text{24}}00}}{{15}}{\text{ }} = {\text{ }}\;\left[ {{\text{2a }} + {\text{ 29d}}} \right]\]
\[{\text{16}}0{\text{ }} = {\text{ 2a }} + {\text{ 29d}}\]
\[{\text{2a }} = {\text{ 16}}0{\text{ }} - {\text{ 29d}}\]
\[{\text{2a }} + {\text{ 29d }} = {\text{ 16}}0{\text{ }} \ldots \ldots ..\left( {\text{1}} \right)\]
For \[{\text{4}}0\] installments:
\[{{\text{S}}_{{\text{4}}0}}{\text{ }} = {\text{ }}\dfrac{{{\text{4}}0}}{2}{\text{ }}\left[ {{\text{2a }} + {\text{ }}\left( {{\text{n }} - {\text{ 1}}} \right){\text{ d}}} \right]\]
\[{\text{36}}00{\text{ }} = {\text{ 2}}0{\text{ }}\left[ {{\text{2a }} + {\text{ }}\left( {{\text{4}}0{\text{ }} - {\text{1}}} \right){\text{ d}}} \right]\]
\[\dfrac{{{\text{36}}00}}{2}{\text{ }} = {\text{ 2a }} + {\text{ 39d}}\]
\[{\text{18}}0{\text{ }} = {\text{ 2a }} + {\text{ 39d}}\]
\[{\text{2a }} + {\text{ 39d }}\; = {\text{ 18}}0{\text{ }} \ldots \ldots \ldots ..\left( {\text{2}} \right)\]
On subtracting eq (i) from (ii), we get
\[{\text{2a }} + {\text{ 39d }}\; = {\text{ 18}}0\]
\[{\text{2a }} + {\text{ 29d }} = {\text{ 16}}0\]
\[\;\left( - \right){\text{ }}\;\left( - \right){\text{ }}\;{\text{ }}\;{\text{ }}\;\left( - \right)\]
-----------
\[{\text{1}}0{\text{d }} = {\text{ 2}}0\]
\[{\text{d }} = {\text{ }}\dfrac{{{\text{2}}0}}{{10}}\]
\[{\text{d }} = {\text{ 2}}\]
On Putting the value of \[d{\text{ }} = {\text{ }}2{\text{ }}in{\text{ }}eq{\text{ }}\left( 1 \right),\]
\[{\text{2a }} + {\text{ 29d }} = {\text{ 16}}0\]
\[{\text{2a }} + {\text{ 29 }}\left( {\text{2}} \right){\text{ }} = {\text{ 16}}0\]
\[{\text{2a }} + {\text{ 58 }} = {\text{ 16}}0\]
\[{\text{2a }} = {\text{ 16}}0{\text{ }} - {\text{ 58}}\]
\[{\text{2a }} = {\text{ 1}}0{\text{2}}\]
\[{\text{a }} = \dfrac{{{\text{ 1}}0{\text{2}}}}{2}\]
\[{\text{a }} = {\text{ 51}}\]
Hence, the value of the first installment is \[{\text{Rs51}}.\]
Note:
The series is finite or infinite depending on the situation whether the sequence is finite or infinite. Finite sequences and series have defined first and last, terms, whereas infinite sequences and series continue indefinitely.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

