
A machine costs Rs.97, 000 and its effective life is estimated to be 12 years. If the scarp realises Rs.2000 only, what amount should be retained out of profits at the end of each year to accumulate at compound interest of 5% per annum in order to buy a new machine after 12 years? $(use{1.05^{12}} = 1.769)$
Answer
608.1k+ views
Hint: To solve this problem we need to have knowledge about annuity concepts. Annuity means a series of fixed payments over a period of time.
Complete step-by-step answer:
Let us write the given data
Cost of the machine = Rs.97, 000
Value of scrap = Rs.2000
Effective cost of machine = cost of machine – value of scrap
= Rs.97, 000 - Rs.2000
=Rs.95, 000
Therefore the Effective cost of machine (Required money) = Rs.95, 000
Future annuity = $\dfrac{A}{r}\left[ {{{\left( {1 + r} \right)}^n} - 1} \right]$
Here Future annuity (required amount) =Rs.95, 000
Rate of interest = 5% =0.05, n=1
On substitute the value in the formula we get
$ \Rightarrow 95000 = \dfrac{A}{{0.05}}\left[ {{{\left( {1 + 0.05} \right)}^{12}} - 1} \right]$
\[ \Rightarrow A = \dfrac{{0.05 \times 95000}}{{{{(1.05)}^2} - 1}} = \dfrac{{0.05 \times 95000}}{{0.769}} = 6176.85\]
Therefore the Annuity amount (that is the amount that has to be retained at the end each year) =Rs.6176.85
NOTE: Annuity is the amount that we have to pay every year without any profits. Here future annuity means the required amount after removing scrap from cost price. Future annuity is also known as effective cost. To solve these kinds of problems we need to know the meaning of value.
Complete step-by-step answer:
Let us write the given data
Cost of the machine = Rs.97, 000
Value of scrap = Rs.2000
Effective cost of machine = cost of machine – value of scrap
= Rs.97, 000 - Rs.2000
=Rs.95, 000
Therefore the Effective cost of machine (Required money) = Rs.95, 000
Future annuity = $\dfrac{A}{r}\left[ {{{\left( {1 + r} \right)}^n} - 1} \right]$
Here Future annuity (required amount) =Rs.95, 000
Rate of interest = 5% =0.05, n=1
On substitute the value in the formula we get
$ \Rightarrow 95000 = \dfrac{A}{{0.05}}\left[ {{{\left( {1 + 0.05} \right)}^{12}} - 1} \right]$
\[ \Rightarrow A = \dfrac{{0.05 \times 95000}}{{{{(1.05)}^2} - 1}} = \dfrac{{0.05 \times 95000}}{{0.769}} = 6176.85\]
Therefore the Annuity amount (that is the amount that has to be retained at the end each year) =Rs.6176.85
NOTE: Annuity is the amount that we have to pay every year without any profits. Here future annuity means the required amount after removing scrap from cost price. Future annuity is also known as effective cost. To solve these kinds of problems we need to know the meaning of value.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Name the states through which the Tropic of Cancer class 8 social science CBSE

Full form of STD, ISD and PCO

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

What are gulf countries and why they are called Gulf class 8 social science CBSE

What is the difference between rai and mustard see class 8 biology CBSE

Which place in Tamil Nadu is known as Little Japan class 8 social science CBSE

