
A light year is a unit of
A. distance
B. time
C. Speed
D. Mass
Answer
572.1k+ views
Hint: We know the distance travelled by light in one year is called light year(ly). It is used to measure large distances. A light year is also related to astronomy and parsec. These units are also used to measure very large distances.
Complete step by step answer:
We know that one light year is equal to the distance that light travels in a year.
$ 1ly = c \times 1yr$
Here c is the speed of light in vacuum which is equal to $3 \times {10^8}\;\dfrac{m}{s}$ and 1 ly means one light year. Hence on simplifying the above relation, we get,
\[ \Rightarrow 1ly = 3 \times {10^8}\;m/s \times 365 \times 24 \times 60 \times 60s\].
\[ \Rightarrow 1ly = 9.46 \times {10^{15}}{\rm{m}}\]
Relation between light year (ly) and astronomical unit (A.U)
$1({\rm{ly) = 9}}{\rm{.46}} \times {\rm{1}}{{\rm{0}}^{15}}m$ …… (I) and,
${\rm{1A}}{\rm{.U = 1}}{\rm{.5}} \times {\rm{1}}{{\rm{0}}^{11}}m$ …… (II)
Here 1 AU means 1 astronomical unit.
On dividing equations(I) and (II), we get:
$\dfrac{{1{\rm{ly}}}}{{1{\rm{A}}{\rm{.U}}}} = \dfrac{{9.456 \times {{10}^{15}}m}}{{1.5 \times {{10}^{11}}m}}$
$ \Rightarrow \dfrac{{1{\rm{ly}}}}{{1{\rm{A}}{\rm{.U}}}} = 6.3 \times {10^4}$
$\therefore 1{\rm{ly = 6}}{\rm{.3}} \times {\rm{1}}{{\rm{0}}^4}{\rm{A}}{\rm{.U}}$
Relation between the light year (ly) and parsec
Again $1{\rm{ly = 9}}{\rm{.46}} \times {\rm{1}}{{\rm{0}}^{15}}m$ …… (III)
And ${\rm{1parsec = 3}}{\rm{.1}} \times {\rm{1}}{{\rm{0}}^{16}}m$ …… (IV)
On dividing equations (III) and (IV), we get
$\dfrac{{1{\rm{parsec}}}}{{1{\rm{ly}}}} = \dfrac{{3.1 \times {{10}^{16}}m}}{{9.46 \times {{10}^{15}}m}}$
$\dfrac{{1{\rm{parsec}}}}{{1{\rm{ly}}}} = 3.28$
$\therefore 1{\rm{parsec = 3}}{\rm{.28ly}}$
Light year is a unit to measure distance. Hence, option (A) is correct.
Additional information:
The light year is used to measure distances in space because the distances are so big that a large unit of distance is required for measuring. Using a light-year as a distance measurement unit has another advantage — it helps you identify the age. Let us consider a star that’s 1 million light-years away. The light from the star has travelled at the speed of light to reach us. Therefore, the star’s light took 1 million years to get to us, and the light that we are seeing was illuminated a million years ago. So the star that we see is really how the star looked a million years ago, not how it looks today.
Note:
In the same way, our sun is approximately 8 light minutes away. If the sun were to suddenly explode immediately, we wouldn’t realize about it for eight minutes because that is how long it might deem the sunshine of the explosion to get here.
Complete step by step answer:
We know that one light year is equal to the distance that light travels in a year.
$ 1ly = c \times 1yr$
Here c is the speed of light in vacuum which is equal to $3 \times {10^8}\;\dfrac{m}{s}$ and 1 ly means one light year. Hence on simplifying the above relation, we get,
\[ \Rightarrow 1ly = 3 \times {10^8}\;m/s \times 365 \times 24 \times 60 \times 60s\].
\[ \Rightarrow 1ly = 9.46 \times {10^{15}}{\rm{m}}\]
Relation between light year (ly) and astronomical unit (A.U)
$1({\rm{ly) = 9}}{\rm{.46}} \times {\rm{1}}{{\rm{0}}^{15}}m$ …… (I) and,
${\rm{1A}}{\rm{.U = 1}}{\rm{.5}} \times {\rm{1}}{{\rm{0}}^{11}}m$ …… (II)
Here 1 AU means 1 astronomical unit.
On dividing equations(I) and (II), we get:
$\dfrac{{1{\rm{ly}}}}{{1{\rm{A}}{\rm{.U}}}} = \dfrac{{9.456 \times {{10}^{15}}m}}{{1.5 \times {{10}^{11}}m}}$
$ \Rightarrow \dfrac{{1{\rm{ly}}}}{{1{\rm{A}}{\rm{.U}}}} = 6.3 \times {10^4}$
$\therefore 1{\rm{ly = 6}}{\rm{.3}} \times {\rm{1}}{{\rm{0}}^4}{\rm{A}}{\rm{.U}}$
Relation between the light year (ly) and parsec
Again $1{\rm{ly = 9}}{\rm{.46}} \times {\rm{1}}{{\rm{0}}^{15}}m$ …… (III)
And ${\rm{1parsec = 3}}{\rm{.1}} \times {\rm{1}}{{\rm{0}}^{16}}m$ …… (IV)
On dividing equations (III) and (IV), we get
$\dfrac{{1{\rm{parsec}}}}{{1{\rm{ly}}}} = \dfrac{{3.1 \times {{10}^{16}}m}}{{9.46 \times {{10}^{15}}m}}$
$\dfrac{{1{\rm{parsec}}}}{{1{\rm{ly}}}} = 3.28$
$\therefore 1{\rm{parsec = 3}}{\rm{.28ly}}$
Light year is a unit to measure distance. Hence, option (A) is correct.
Additional information:
The light year is used to measure distances in space because the distances are so big that a large unit of distance is required for measuring. Using a light-year as a distance measurement unit has another advantage — it helps you identify the age. Let us consider a star that’s 1 million light-years away. The light from the star has travelled at the speed of light to reach us. Therefore, the star’s light took 1 million years to get to us, and the light that we are seeing was illuminated a million years ago. So the star that we see is really how the star looked a million years ago, not how it looks today.
Note:
In the same way, our sun is approximately 8 light minutes away. If the sun were to suddenly explode immediately, we wouldn’t realize about it for eight minutes because that is how long it might deem the sunshine of the explosion to get here.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

