
A lens made of material of refractive index ${\mu _2}$ is surrounded by a medium of refractive index ${\mu _1}$. The focal length f is related as:
A. $f \propto (1 - {\mu _2} - {\mu _1})$
B. $f \propto \dfrac{1}{{({\mu _2} - {\mu _1})}}$
C. $f \propto \dfrac{1}{{({\mu _2} + {\mu _1})}}$
D. $f \propto \dfrac{1}{{(1 + {\mu _2} - {\mu _1})}}$
Answer
564.6k+ views
Hint: In order to find the answer, we can use the lens maker’s formula. According to the lens maker’s formula, the focal length depends on the relative refractive index of the lens and the radii of curvature of the two spheres which are used in making the lens by the following equation.
$\dfrac{1}{f} = \left( {{\mu _{rel}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Where, ${R_1}$ is the radius of the first sphere and ${R_2}$ is the radius of the second sphere which is used to make the surface of the lens.
Complete step by step answer:
It is given that the refractive index of the lens is ${\mu _1}$
The Refractive index of the surrounding medium is given as ${\mu _2}$
We need to find the relation of focal length with the refractive index of the lens and the refractive index of the surrounding.
We know that the formula of the focal length is given by the lens maker’s formula. According to the lens maker’s formula, the focal length depends on the relative refractive index of the lens and the radii of curvature of the two spheres which are used in making the lens by the following equation.
$\dfrac{1}{f} = \left( {{\mu _{rel}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$ …………………...(1)
Where, ${R_1}$ is the radius of the first sphere and ${R_2}$ is the radius of the second sphere which is used to make the surface of the lens
${\mu _{rel}}$ is the relative refractive index given by the ratio of refractive index of lens to refractive index of medium.
${\mu _{rel}} = \dfrac{{{\text{refractive}}\,{\text{index}}\,{\text{of}}\,{\text{lens}}}}{{{\text{refractive}}\,{\text{index}}\,{\text{of}}\,{\text{medium}}}}$
Therefore,
${\mu _{rel}} = \dfrac{{{\mu _2}}}{{{\mu _1}}}$ …………...(2)
Now let us substitute the equation (2) in equation (1).
Then we get,
$\Rightarrow \dfrac{1}{f} = \left( {\dfrac{{{\mu _2}}}{{{\mu _1}}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Therefore, on solving we get
$\Rightarrow \dfrac{1}{f} = \left( {\dfrac{{{\mu _2} - {\mu _1}}}{{{\mu _1}}}} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
From this, we can see that,
$\Rightarrow \dfrac{1}{f} \propto \left( {\dfrac{{{\mu _2} - {\mu _1}}}{{{\mu _1}}}} \right)$
$\Rightarrow f \propto \dfrac{{{\mu _1}}}{{{\mu _2} - {\mu _1}}}$
$\Rightarrow f \propto \dfrac{1}{{({\mu _2} - {\mu _1})}}$
Therefore, option B is the correct answer.
Note:
From Lens maker’s formula
$\dfrac{1}{f} = \left( {\dfrac{{{\mu _2} - {\mu _1}}}{{{\mu _1}}}} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
We can see that if net refractive index is decreased for example if we insert the lens in a denser medium than air then the value of ${\mu _2} - {\mu _1}$ will be less, then focal length will increase.
$\dfrac{1}{f} = \left( {{\mu _{rel}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Where, ${R_1}$ is the radius of the first sphere and ${R_2}$ is the radius of the second sphere which is used to make the surface of the lens.
Complete step by step answer:
It is given that the refractive index of the lens is ${\mu _1}$
The Refractive index of the surrounding medium is given as ${\mu _2}$
We need to find the relation of focal length with the refractive index of the lens and the refractive index of the surrounding.
We know that the formula of the focal length is given by the lens maker’s formula. According to the lens maker’s formula, the focal length depends on the relative refractive index of the lens and the radii of curvature of the two spheres which are used in making the lens by the following equation.
$\dfrac{1}{f} = \left( {{\mu _{rel}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$ …………………...(1)
Where, ${R_1}$ is the radius of the first sphere and ${R_2}$ is the radius of the second sphere which is used to make the surface of the lens
${\mu _{rel}}$ is the relative refractive index given by the ratio of refractive index of lens to refractive index of medium.
${\mu _{rel}} = \dfrac{{{\text{refractive}}\,{\text{index}}\,{\text{of}}\,{\text{lens}}}}{{{\text{refractive}}\,{\text{index}}\,{\text{of}}\,{\text{medium}}}}$
Therefore,
${\mu _{rel}} = \dfrac{{{\mu _2}}}{{{\mu _1}}}$ …………...(2)
Now let us substitute the equation (2) in equation (1).
Then we get,
$\Rightarrow \dfrac{1}{f} = \left( {\dfrac{{{\mu _2}}}{{{\mu _1}}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Therefore, on solving we get
$\Rightarrow \dfrac{1}{f} = \left( {\dfrac{{{\mu _2} - {\mu _1}}}{{{\mu _1}}}} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
From this, we can see that,
$\Rightarrow \dfrac{1}{f} \propto \left( {\dfrac{{{\mu _2} - {\mu _1}}}{{{\mu _1}}}} \right)$
$\Rightarrow f \propto \dfrac{{{\mu _1}}}{{{\mu _2} - {\mu _1}}}$
$\Rightarrow f \propto \dfrac{1}{{({\mu _2} - {\mu _1})}}$
Therefore, option B is the correct answer.
Note:
From Lens maker’s formula
$\dfrac{1}{f} = \left( {\dfrac{{{\mu _2} - {\mu _1}}}{{{\mu _1}}}} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
We can see that if net refractive index is decreased for example if we insert the lens in a denser medium than air then the value of ${\mu _2} - {\mu _1}$ will be less, then focal length will increase.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

