
$A = \left( {\begin{array}{*{20}{c}}
{ - 4}&{ - 1} \\
3&1
\end{array}} \right)$, then the determinant of $({A^{2016}} - 2{A^{2015}} - {A^{2014}})$ is:
$
A) \, - 175 \\
B) \,2014 \\
C) \,2016 \\
D) \, - 25 \\
$
Answer
591.6k+ views
Hint:Take ${A^{2014}}$ common in first step. Then you will get a matrix of power two, find the matrix. At last find its determinant and get your answer.
Complete step-by-step answer:
Let us assume that
$B = ({A^{2016}} - 2{A^{2015}} - {A^{2014}})$
Taking ${A^{2014}}$ in common
$B = {A^{2014}}({A^2} - 2A - I)$
Now we need to find $({A^2} - 2A - I)$
$({A^2} - 2A - I)$$ = \left( {\begin{array}{*{20}{c}}
{ - 4}&{ - 1} \\
3&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{ - 4}&{ - 1} \\
3&1
\end{array}} \right) - 2\left( {\begin{array}{*{20}{c}}
{ - 4}&{ - 1} \\
3&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right)$
$
({A^2} - 2A - I) = \left( {\begin{array}{*{20}{c}}
{( - 4)( - 4) + ( - 1)(3)}&{( - 4)( - 1) + ( - 1)(1)} \\
{( - 1)(3) + (3)(1)}&{(3)( - 1) + (1)(1)}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
8&2 \\
{ - 6}&{ - 2}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right) \\
({A^2} - 2A - I) = \left( {\begin{array}{*{20}{c}}
{13}&3 \\
{ - 9}&{ - 2}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
8&2 \\
{ - 6}&{ - 2}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right) \\
({A^2} - 2A - I) = \left( {\begin{array}{*{20}{c}}
{20}&5 \\
{ - 15}&{ - 5}
\end{array}} \right) \\
$
So $B = {A^{2014}}\left( {\begin{array}{*{20}{c}}
{20}&5 \\
{ - 15}&{ - 5}
\end{array}} \right)$
Taking determinant on both sides
$\left| B \right| = \left| {{A^{2014}}\left( {\begin{array}{*{20}{c}}
{20}&5 \\
{ - 15}&{ - 5}
\end{array}} \right)} \right|$
Since $\left| {A.B} \right| = \left| A \right|\left| B \right|$
Therefore
$\left| B \right| = \left| {{A^{2014}}} \right|\left| {\left( {\begin{array}{*{20}{c}}
{20}&5 \\
{ - 15}&{ - 5}
\end{array}} \right)} \right|$
Using property $\left| {{B^x}} \right| = {\left| B \right|^x}$
$
\left| B \right| = {\left| A \right|^{2014}}\left| {\left( {\begin{array}{*{20}{c}}
{20}&5 \\
{ - 15}&{ - 5}
\end{array}} \right)} \right| \\
\left| B \right| = {\left| {\left( {\begin{array}{*{20}{c}}
{ - 4}&{ - 1} \\
3&1
\end{array}} \right)} \right|^{2014}}\left| {\left( {\begin{array}{*{20}{c}}
{20}&5 \\
{ - 15}&{ - 5}
\end{array}} \right)} \right| \\
$
$({(-4)(1)-(-1)(3)}^{2014})\,(25)$
$\left| B \right| = {( - 1)^{2014}}( - 25) = - 25 $
So, the correct answer is “Option D”.
Note: In order to solve such a question you must know all the properties of matrices and determinants. We used the properties $\left| {{A^x}} \right| = {\left| A \right|^x}{\text{ and }}\left| {A.B} \right| = \left| A \right|\left| B \right|$ in the question. In the next we may need $A{A^{ - 1}} = I$. Hence, remembering all these properties is quite important also, we need to be careful while multiplying matrices as it could lead to mistakes.
Complete step-by-step answer:
Let us assume that
$B = ({A^{2016}} - 2{A^{2015}} - {A^{2014}})$
Taking ${A^{2014}}$ in common
$B = {A^{2014}}({A^2} - 2A - I)$
Now we need to find $({A^2} - 2A - I)$
$({A^2} - 2A - I)$$ = \left( {\begin{array}{*{20}{c}}
{ - 4}&{ - 1} \\
3&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{ - 4}&{ - 1} \\
3&1
\end{array}} \right) - 2\left( {\begin{array}{*{20}{c}}
{ - 4}&{ - 1} \\
3&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right)$
$
({A^2} - 2A - I) = \left( {\begin{array}{*{20}{c}}
{( - 4)( - 4) + ( - 1)(3)}&{( - 4)( - 1) + ( - 1)(1)} \\
{( - 1)(3) + (3)(1)}&{(3)( - 1) + (1)(1)}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
8&2 \\
{ - 6}&{ - 2}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right) \\
({A^2} - 2A - I) = \left( {\begin{array}{*{20}{c}}
{13}&3 \\
{ - 9}&{ - 2}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
8&2 \\
{ - 6}&{ - 2}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right) \\
({A^2} - 2A - I) = \left( {\begin{array}{*{20}{c}}
{20}&5 \\
{ - 15}&{ - 5}
\end{array}} \right) \\
$
So $B = {A^{2014}}\left( {\begin{array}{*{20}{c}}
{20}&5 \\
{ - 15}&{ - 5}
\end{array}} \right)$
Taking determinant on both sides
$\left| B \right| = \left| {{A^{2014}}\left( {\begin{array}{*{20}{c}}
{20}&5 \\
{ - 15}&{ - 5}
\end{array}} \right)} \right|$
Since $\left| {A.B} \right| = \left| A \right|\left| B \right|$
Therefore
$\left| B \right| = \left| {{A^{2014}}} \right|\left| {\left( {\begin{array}{*{20}{c}}
{20}&5 \\
{ - 15}&{ - 5}
\end{array}} \right)} \right|$
Using property $\left| {{B^x}} \right| = {\left| B \right|^x}$
$
\left| B \right| = {\left| A \right|^{2014}}\left| {\left( {\begin{array}{*{20}{c}}
{20}&5 \\
{ - 15}&{ - 5}
\end{array}} \right)} \right| \\
\left| B \right| = {\left| {\left( {\begin{array}{*{20}{c}}
{ - 4}&{ - 1} \\
3&1
\end{array}} \right)} \right|^{2014}}\left| {\left( {\begin{array}{*{20}{c}}
{20}&5 \\
{ - 15}&{ - 5}
\end{array}} \right)} \right| \\
$
$({(-4)(1)-(-1)(3)}^{2014})\,(25)$
$\left| B \right| = {( - 1)^{2014}}( - 25) = - 25 $
So, the correct answer is “Option D”.
Note: In order to solve such a question you must know all the properties of matrices and determinants. We used the properties $\left| {{A^x}} \right| = {\left| A \right|^x}{\text{ and }}\left| {A.B} \right| = \left| A \right|\left| B \right|$ in the question. In the next we may need $A{A^{ - 1}} = I$. Hence, remembering all these properties is quite important also, we need to be careful while multiplying matrices as it could lead to mistakes.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

