Answer

Verified

453k+ views

Hint- Here, the property of a regular polygon is used (i.e., the sum of all the exterior angles which are equal to each other of a regular polygon is always ${360^0}$).

${\text{(a)}}$ No, it is not possible to have a regular polygon with measure of each exterior angle of ${\text{2}}{{\text{2}}^0}$ because ${\text{2}}{{\text{2}}^0}$ is not a multiple of ${360^0}$. Since, the sum of all the exterior angles of a regular polygon is always ${360^0}$ and all the exterior angles of a regular polygon are equal in measure.

${\text{(b)}}$ If the interior angle of a regular polygon is ${\text{2}}{{\text{2}}^0}$, then the measure of exterior angle of that regular polygon will be \[\left( {{{180}^0} - {\text{2}}{{\text{2}}^0}} \right) = {158^0}\]. Clearly, \[{158^0}\] is not a multiple of ${360^0}$. So, it is not possible to have a regular polygon with a measure of each interior angle of ${\text{2}}{{\text{2}}^0}$.

Note- In these types of problems, if the interior angle of the regular polygon is given then it is converted into the exterior angle of the regular polygon. Then using properties of a regular polygon like the sum of all the exterior angles is always equal to ${360^0}$ and each exterior angle is equal, we have to check whether these properties hold true or false. If they hold then that regular polygon is possible else, it is not.

${\text{(a)}}$ No, it is not possible to have a regular polygon with measure of each exterior angle of ${\text{2}}{{\text{2}}^0}$ because ${\text{2}}{{\text{2}}^0}$ is not a multiple of ${360^0}$. Since, the sum of all the exterior angles of a regular polygon is always ${360^0}$ and all the exterior angles of a regular polygon are equal in measure.

${\text{(b)}}$ If the interior angle of a regular polygon is ${\text{2}}{{\text{2}}^0}$, then the measure of exterior angle of that regular polygon will be \[\left( {{{180}^0} - {\text{2}}{{\text{2}}^0}} \right) = {158^0}\]. Clearly, \[{158^0}\] is not a multiple of ${360^0}$. So, it is not possible to have a regular polygon with a measure of each interior angle of ${\text{2}}{{\text{2}}^0}$.

Note- In these types of problems, if the interior angle of the regular polygon is given then it is converted into the exterior angle of the regular polygon. Then using properties of a regular polygon like the sum of all the exterior angles is always equal to ${360^0}$ and each exterior angle is equal, we have to check whether these properties hold true or false. If they hold then that regular polygon is possible else, it is not.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Difference Between Plant Cell and Animal Cell

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Change the following sentences into negative and interrogative class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE