
A. In a unit vector notation, what is \[\vec r = \vec a - \vec b + \vec c\]when \[\vec a = 5\hat i + 4\hat k\], \[\vec b = - 2\hat i + 2\hat j + 3\hat k\] and \[\vec c = 4\hat i + 3\hat j + 2\hat k\],
B. Calculate the angle between \[\vec r\]and the positive – axis.
C. What is the component of \[\vec a\] along the direction of \[\vec b\]
D. What is the perpendicular to the direction of \[\vec b\] but in the plane of \[\vec b\] and \[\vec a\]?
Answer
480.6k+ views
Hint: To answer this question we will first define what is a unit vector. Next step is to answer each part of this question with a detailed explanation. We will first find answer A by substituting values of , \[\vec a\], \[\vec b\]and \[\vec c\]in \[\vec r\]and then finding the unit vector using its formula. For part b and c and d there are direct formulas available, hence we will simply apply those formulas and solve the questions.
Formula Used:
Unit vector= \[\hat u = \dfrac{u}{{|u|}}\] where u is a vector.
Angle between vectors:
\[\cos \theta = \dfrac{{\vec a.\vec b}}{{\left| {\vec a} \right|\left| {\vec b} \right|}}\] where a and b are given vectors.
For component of \[\vec a\] perpendicular to \[\vec b\] In the plane of \[\vec a\] and \[\vec b\] we use: \[\dfrac{{\vec a \times \left( {\vec b \times \vec a} \right)}}{{{{\left| a \right|}^2}}}\]
Complete step by step solution:
Let us first know what a unit vector is: it is such a vector whose magnitude is one.
Let us answer question A.
A. It has been given that: \[\vec a = 5\hat i + 4\hat k\], \[\vec b = - 2\hat i + 2\hat j + 3\hat k\] and \[\vec c = 4\hat i + 3\hat j + 2\hat k\],
We have to find \[\vec r\]which is \[\vec r = \vec a - \vec b + \vec c\].
Let us substitute the values of , \[\vec a\], \[\vec b\]and \[\vec c\]in \[\vec r\]
We get : \[\vec r = 5\hat i + 4\hat k - \left( { - 2\hat i + 2\hat j + 3\hat k} \right) + 4\hat i + 3\hat j + 2\hat k\]
Or, \[\vec r = 5\hat i + 4\hat k + 2\hat i - 2\hat j - 3\hat k + 4\hat i + 3\hat j + 2\hat k\]
Or, \[\vec r = 5\hat i + 2\hat i + 4\hat i - 2\hat j + 3\hat j - 3\hat k + 2\hat k + 4\hat k\]
Or, \[\vec r = \left( {5 + 2 + 4} \right)\hat i + \left( {3 - 2} \right)\hat j + \left( { - 3 + 2 + 4} \right)\hat k\]
Or, \[\vec r = 11\hat i + 1\hat j + 3\hat k\]
Hence for unit vector notation we have to use: \[\hat r = \dfrac{r}{{|r|}}\]
Lets find \[|r|\].
\[|r| = \sqrt {{{11}^2} + {1^2} + {3^2}} \]
Or, \[|r| = \sqrt {121 + 1 + 9} \]
Or, \[|r| = \sqrt {131} \]
Hence the answer A is : \[\hat r = \dfrac{r}{{|r|}}\]= \[\hat r = \dfrac{{11\hat i + 1\hat j + 3\hat k}}{{\sqrt {131} }}\],
B. Now we know that \[\vec r = 11\hat i + 1\hat j + 3\hat k\] hence the angle of this with z-axis is given by
\[\cos \theta = \dfrac{{\vec a.\vec b}}{{\left| {\vec a} \right|\left| {\vec b} \right|}}\]
or, \[\cos \theta = \dfrac{{\vec r.\hat k}}{{\left| {\vec r} \right|\left| {\hat k} \right|}}\]
Or, \[\cos \theta = \dfrac{{\left( {11\hat i + 1\hat j + 3\hat k} \right)\hat k}}{{\sqrt {131} \times \sqrt 1 }}\]
Or, \[\cos \theta = \dfrac{{0\hat i + 0\hat j + 3\hat k}}{{\sqrt {131} }}\] \[\left( {\because \hat k \times \hat i = \hat k \times \hat j = 0} \right)\]and \[\left( {\because \hat k \times \hat k = 1} \right)\]
Or, \[\cos \theta = \dfrac{{3\hat k}}{{\sqrt {131} }}\].
Hence angle \[\theta = {\cos ^{ - 1}}\dfrac{5}{{\sqrt {131} }}\].
C. Here the component of \[\vec a\] along \[\vec b\] is \[\dfrac{{\vec a.\vec b}}{{\left| {\vec b} \right|}}\]
Hence projection is \[\dfrac{{\left( {5\hat i + 4\hat k} \right).\left( { - 2\hat i + 2\hat j + 3\hat k} \right)}}{{\left| {2\hat i - 2\hat j - 3\hat k} \right|}}\]
Or, \[\dfrac{{ - 10 + 0 + 12}}{{\sqrt {{2^2} + {2^2} + {3^2}} }}\]
Or, \[\dfrac{2}{{\sqrt {4 + 4 + 9} }}\]
Or, \[\dfrac{2}{{\sqrt {17} }}\].
D. For the perpendicular to the direction of \[\vec b\] but in the plane of \[\vec b\] and \[\vec a\]:
\[\sqrt {{{\left| a \right|}^2} - {{\left| b \right|}^2}} \]
or, \[\sqrt {{5^2} + {4^2} - \dfrac{{{{\left( 2 \right)}^2}}}{{{{\sqrt {17} }^2}}}} \] (we have already found the value for \[\left| b \right|\]).
Or, \[\sqrt {25 + 16 - \dfrac{4}{{17}}} \]
Or, \[\sqrt {41 - \dfrac{4}{{17}}} \]
Or, \[\sqrt {\dfrac{{697 - 4}}{{17}}} \]
Or, \[\sqrt {\dfrac{{693}}{{17}}} \].
Note:
In the first part, remember to check the answer, find if the answer that we have found is a unit vector or no. to check this we have to find the magnitude of \[\vec r\]. That is we will find \[\left| {\hat r = \dfrac{r}{{|r|}}} \right|\],
We will see that its magnitude comes out to be 1. Hence our answer is correct.
In the 2nd question, remember to use the formula for angle using \[\cos \theta \] and not \[\sin \theta \]. We have to use this because \[\vec a.\vec b = \left| {\vec a} \right|\left| {\vec b} \right|\cos \theta \] is used to find angles between them.
Formula Used:
Unit vector= \[\hat u = \dfrac{u}{{|u|}}\] where u is a vector.
Angle between vectors:
\[\cos \theta = \dfrac{{\vec a.\vec b}}{{\left| {\vec a} \right|\left| {\vec b} \right|}}\] where a and b are given vectors.
For component of \[\vec a\] perpendicular to \[\vec b\] In the plane of \[\vec a\] and \[\vec b\] we use: \[\dfrac{{\vec a \times \left( {\vec b \times \vec a} \right)}}{{{{\left| a \right|}^2}}}\]
Complete step by step solution:
Let us first know what a unit vector is: it is such a vector whose magnitude is one.
Let us answer question A.
A. It has been given that: \[\vec a = 5\hat i + 4\hat k\], \[\vec b = - 2\hat i + 2\hat j + 3\hat k\] and \[\vec c = 4\hat i + 3\hat j + 2\hat k\],
We have to find \[\vec r\]which is \[\vec r = \vec a - \vec b + \vec c\].
Let us substitute the values of , \[\vec a\], \[\vec b\]and \[\vec c\]in \[\vec r\]
We get : \[\vec r = 5\hat i + 4\hat k - \left( { - 2\hat i + 2\hat j + 3\hat k} \right) + 4\hat i + 3\hat j + 2\hat k\]
Or, \[\vec r = 5\hat i + 4\hat k + 2\hat i - 2\hat j - 3\hat k + 4\hat i + 3\hat j + 2\hat k\]
Or, \[\vec r = 5\hat i + 2\hat i + 4\hat i - 2\hat j + 3\hat j - 3\hat k + 2\hat k + 4\hat k\]
Or, \[\vec r = \left( {5 + 2 + 4} \right)\hat i + \left( {3 - 2} \right)\hat j + \left( { - 3 + 2 + 4} \right)\hat k\]
Or, \[\vec r = 11\hat i + 1\hat j + 3\hat k\]
Hence for unit vector notation we have to use: \[\hat r = \dfrac{r}{{|r|}}\]
Lets find \[|r|\].
\[|r| = \sqrt {{{11}^2} + {1^2} + {3^2}} \]
Or, \[|r| = \sqrt {121 + 1 + 9} \]
Or, \[|r| = \sqrt {131} \]
Hence the answer A is : \[\hat r = \dfrac{r}{{|r|}}\]= \[\hat r = \dfrac{{11\hat i + 1\hat j + 3\hat k}}{{\sqrt {131} }}\],
B. Now we know that \[\vec r = 11\hat i + 1\hat j + 3\hat k\] hence the angle of this with z-axis is given by
\[\cos \theta = \dfrac{{\vec a.\vec b}}{{\left| {\vec a} \right|\left| {\vec b} \right|}}\]
or, \[\cos \theta = \dfrac{{\vec r.\hat k}}{{\left| {\vec r} \right|\left| {\hat k} \right|}}\]
Or, \[\cos \theta = \dfrac{{\left( {11\hat i + 1\hat j + 3\hat k} \right)\hat k}}{{\sqrt {131} \times \sqrt 1 }}\]
Or, \[\cos \theta = \dfrac{{0\hat i + 0\hat j + 3\hat k}}{{\sqrt {131} }}\] \[\left( {\because \hat k \times \hat i = \hat k \times \hat j = 0} \right)\]and \[\left( {\because \hat k \times \hat k = 1} \right)\]
Or, \[\cos \theta = \dfrac{{3\hat k}}{{\sqrt {131} }}\].
Hence angle \[\theta = {\cos ^{ - 1}}\dfrac{5}{{\sqrt {131} }}\].
C. Here the component of \[\vec a\] along \[\vec b\] is \[\dfrac{{\vec a.\vec b}}{{\left| {\vec b} \right|}}\]
Hence projection is \[\dfrac{{\left( {5\hat i + 4\hat k} \right).\left( { - 2\hat i + 2\hat j + 3\hat k} \right)}}{{\left| {2\hat i - 2\hat j - 3\hat k} \right|}}\]
Or, \[\dfrac{{ - 10 + 0 + 12}}{{\sqrt {{2^2} + {2^2} + {3^2}} }}\]
Or, \[\dfrac{2}{{\sqrt {4 + 4 + 9} }}\]
Or, \[\dfrac{2}{{\sqrt {17} }}\].
D. For the perpendicular to the direction of \[\vec b\] but in the plane of \[\vec b\] and \[\vec a\]:
\[\sqrt {{{\left| a \right|}^2} - {{\left| b \right|}^2}} \]
or, \[\sqrt {{5^2} + {4^2} - \dfrac{{{{\left( 2 \right)}^2}}}{{{{\sqrt {17} }^2}}}} \] (we have already found the value for \[\left| b \right|\]).
Or, \[\sqrt {25 + 16 - \dfrac{4}{{17}}} \]
Or, \[\sqrt {41 - \dfrac{4}{{17}}} \]
Or, \[\sqrt {\dfrac{{697 - 4}}{{17}}} \]
Or, \[\sqrt {\dfrac{{693}}{{17}}} \].
Note:
In the first part, remember to check the answer, find if the answer that we have found is a unit vector or no. to check this we have to find the magnitude of \[\vec r\]. That is we will find \[\left| {\hat r = \dfrac{r}{{|r|}}} \right|\],
We will see that its magnitude comes out to be 1. Hence our answer is correct.
In the 2nd question, remember to use the formula for angle using \[\cos \theta \] and not \[\sin \theta \]. We have to use this because \[\vec a.\vec b = \left| {\vec a} \right|\left| {\vec b} \right|\cos \theta \] is used to find angles between them.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

