
A door of width of 6m has an arc above it having a height of 2m as shown. Find the radius of the arc.
Answer
583.8k+ views
Hint: Assume that the radius of the circle is r. Hence determine the length OE in terms of r. Use Pythagoras theorem in triangle AOE and hence form an equation in r. Solve for r and hence determine the radius of the circular arc of the door.
Complete step-by-step answer:
Let the radius of the circular arc of the door be r.
Hence, we have OA = OF = r.
Since FE =2 m, we have
OE = OF-FE = r-2
Also given that AB = 6m.
Since the perpendicular from the centre to the chord bisects the chord, we have AE = EB = 3m
We know that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the legs of the triangle. This is known as Pythagoras theorem.
Now in triangle AOE by Pythagoras theorem, we have
$A{{O}^{2}}=O{{E}^{2}}+A{{E}^{2}}$
Substituting the values of AO, OE, and AE, we get
${{r}^{2}}={{\left( r-2 \right)}^{2}}+{{3}^{2}}$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
Hence, we have
${{r}^{2}}={{r}^{2}}-2\times 2\times r+{{2}^{2}}+{{3}^{2}}$
Adding $4r-{{r}^{2}}$ on both sides, we get
$4r=4+9=13$
Dividing by 4 on both sides, we get
$r=\dfrac{13}{4}$
Hence the radius of the circular arc is $\dfrac{13}{4}m$
Note: Alternative solution- Using sine rule and the distance of circumcentre from a side of the triangle.
We know that the length of the side a of triangle ABC is given by $a=2R\sin A$
Here a = 6cm
Hence, we have
$2R\sin A=6\Rightarrow R\sin A=3\text{ }\left( i \right)$
Also, we know that the distance of the circumcentre from side a is given by $R\cos A$
Hence, we have
$R\cos A=OE=R-2\text{ }\left( ii \right)$
Squaring and adding equation (i) and (ii), we get
${{R}^{2}}\left( {{\sin }^{2}}A+{{\cos }^{2}}A \right)=9+{{\left( R-2 \right)}^{2}}$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1,\forall x\in \mathbb{R}$
Hence, we have
${{R}^{2}}={{\left( R-2 \right)}^{2}}+9$
Subtracting ${{\left( R-2 \right)}^{2}}$ from both sides, we get
${{R}^{2}}-{{\left( R-2 \right)}^{2}}=9$
Using ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$, we get
$\begin{align}
& \left( R-R+2 \right)\left( R+R-2 \right)=9 \\
& \Rightarrow 2R-2=\dfrac{9}{2} \\
& \Rightarrow 2R=\dfrac{13}{2} \\
& \Rightarrow R=\dfrac{13}{4} \\
\end{align}$
Hence the radius of the circle is $\dfrac{13}{4}$, which is the same as obtained above.
Complete step-by-step answer:
Let the radius of the circular arc of the door be r.
Hence, we have OA = OF = r.
Since FE =2 m, we have
OE = OF-FE = r-2
Also given that AB = 6m.
Since the perpendicular from the centre to the chord bisects the chord, we have AE = EB = 3m
We know that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the legs of the triangle. This is known as Pythagoras theorem.
Now in triangle AOE by Pythagoras theorem, we have
$A{{O}^{2}}=O{{E}^{2}}+A{{E}^{2}}$
Substituting the values of AO, OE, and AE, we get
${{r}^{2}}={{\left( r-2 \right)}^{2}}+{{3}^{2}}$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
Hence, we have
${{r}^{2}}={{r}^{2}}-2\times 2\times r+{{2}^{2}}+{{3}^{2}}$
Adding $4r-{{r}^{2}}$ on both sides, we get
$4r=4+9=13$
Dividing by 4 on both sides, we get
$r=\dfrac{13}{4}$
Hence the radius of the circular arc is $\dfrac{13}{4}m$
Note: Alternative solution- Using sine rule and the distance of circumcentre from a side of the triangle.
We know that the length of the side a of triangle ABC is given by $a=2R\sin A$
Here a = 6cm
Hence, we have
$2R\sin A=6\Rightarrow R\sin A=3\text{ }\left( i \right)$
Also, we know that the distance of the circumcentre from side a is given by $R\cos A$
Hence, we have
$R\cos A=OE=R-2\text{ }\left( ii \right)$
Squaring and adding equation (i) and (ii), we get
${{R}^{2}}\left( {{\sin }^{2}}A+{{\cos }^{2}}A \right)=9+{{\left( R-2 \right)}^{2}}$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1,\forall x\in \mathbb{R}$
Hence, we have
${{R}^{2}}={{\left( R-2 \right)}^{2}}+9$
Subtracting ${{\left( R-2 \right)}^{2}}$ from both sides, we get
${{R}^{2}}-{{\left( R-2 \right)}^{2}}=9$
Using ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$, we get
$\begin{align}
& \left( R-R+2 \right)\left( R+R-2 \right)=9 \\
& \Rightarrow 2R-2=\dfrac{9}{2} \\
& \Rightarrow 2R=\dfrac{13}{2} \\
& \Rightarrow R=\dfrac{13}{4} \\
\end{align}$
Hence the radius of the circle is $\dfrac{13}{4}$, which is the same as obtained above.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

