
A continuous random variable $X$ has probability density function given by
\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{k}{x}\,\,\,\,\,\,1 \leqslant x \leqslant 9} \\
{0\,\,\,\,\,\,x < 1\,or\,x > 9}
\end{array}} \right.\]
a. Find the value of $k.$
b. Find the mean and variance of $X$, giving your answer correct to three decimal places.
Answer
453.6k+ views
Hint: In this question, we are going to find the value of $k$ and then to find mean and variance of $X$.
First we are going to find the value of $k$ by using the probability density function.
Next we are going to find the mean and variance of $X$ for the probability density function.
Hence we can get the required solution.
Formula used: The probability density function is written in the form
$\int\limits_{ - \infty }^\infty {f\left( x \right)dx = 1} $
Mean of the probability density function is written as
$\mu = E\left( X \right) = \int\limits_{ - \infty }^\infty {xf\left( x \right)dx} $
Variance of the probability density function is written as
${\sigma ^2} = Var\left( X \right) = E\left( {{X^2}} \right) - {\mu ^2}$
${\sigma ^2} = \int\limits_{ - \infty }^\infty {{x^2}f\left( x \right)dx - {\mu ^2}} $
Complete step by step solution:
In this question, we are going to find the value of $k$ and then find mean and variance of $X$ .
a.)First we are going to find the value of $k$ by using the probability density function.
Since $f\left( x \right)$is a probability density function$\int\limits_{ - \infty }^\infty {f\left( x \right)dx = 1} $
That is $\int\limits_1^9 {f\left( x \right)dx = 1} $
Substitute the value of $f\left( x \right)$
$ \Rightarrow \int\limits_1^9 {\dfrac{k}{x}dx = 1} $
$k$is a constant and it can be taken outside
$ \Rightarrow k\int\limits_1^9 {\dfrac{1}{x}dx = 1} $
Integration of $\dfrac{1}{x}dx$ is $\ln \left| x \right| + c$
$ \Rightarrow k\left[ {\ln \left| x \right| + C} \right]_1^9 = 1$
Substitute the value of upper and lower limit in $x,$ that is upper limit minus lower limit, we get
$ \Rightarrow k\left[ {\left( {\ln \left| 9 \right| + C} \right) - \left( {\ln \left| 1 \right| + C} \right)} \right] = 1$
$ \Rightarrow k\left[ {2.19772} \right] = 1$
$ \Rightarrow k = \dfrac{1}{{2.19772}}$
$ \Rightarrow k = 0.45501$
Hence we get the value of $k$ as $0.45501$
b.) now we are going to find the mean and variance of the probability density function.
$\mu = \int\limits_{ - \infty }^\infty {xf\left( x \right)dx} $
Substitute the value of $f\left( x \right)$
$ \Rightarrow \mu = \int\limits_1^9 {x \times \dfrac{k}{x}dx} $
$ \Rightarrow \mu = \int\limits_1^9 {kdx} $
$k$is a constant and it can be taken outside
$ \Rightarrow \mu = k\int\limits_1^9 {dx} $
$ \Rightarrow \mu = k\left[ {x + C} \right]_1^9$
Substitute the value of upper and lower limit in $x,$ that is upper limit minus lower limit, we get
$ \Rightarrow \mu = k\left[ {\left( {9 + C} \right) - \left( {1 + C} \right)} \right]$
$ \Rightarrow \mu = k\left[ 8 \right]$
$ \Rightarrow \mu = \left( {0.45501} \right)\left[ 8 \right]$
$ \Rightarrow \mu = 3.64008$
Hence we get the required mean value
$\Rightarrow$${\sigma ^2} = \int\limits_{ - \infty }^\infty {{x^2}f\left( x \right)dx - {\mu ^2}} $
$\Rightarrow$$E\left( {{X^2}} \right) = \int\limits_{ - \infty }^\infty {{x^2}f\left( x \right)dx} $
Substitute the value of $f\left( x \right)$
$\Rightarrow$$E\left( {{X^2}} \right) = \int\limits_1^9 {{x^2}\dfrac{k}{x}dx} $
$\Rightarrow$$E\left( {{X^2}} \right) = \int\limits_1^9 {kxdx} $
$k$ is a constant and it can be taken outside
$\Rightarrow$$E\left( {{X^2}} \right) = k\int\limits_1^9 {xdx} $
$\Rightarrow$$E\left( {{X^2}} \right) = k\left[ {\dfrac{{{x^2}}}{2}} \right]_1^9$
Substitute the value of upper and lower limit in $x,$ that is upper limit minus lower limit, we get
$\Rightarrow$$E\left( {{X^2}} \right) = k\left[ {\left( {\dfrac{{{9^2}}}{2}} \right) - \dfrac{{{1^2}}}{2}} \right]$
Let us square the term and we get
$\Rightarrow$$E\left( {{X^2}} \right) = k\left[ {\left( {\dfrac{{81}}{2}} \right) - \dfrac{1}{2}} \right]$
On subtracting the term and we get
$\Rightarrow$$E\left( {{X^2}} \right) = k\left[ {\left( {\dfrac{{80}}{2}} \right)} \right]$
On rewriting the term and we get
$\Rightarrow$$E\left( {{X^2}} \right) = 0.45501\left[ {\left( {40} \right)} \right]$
Let us multiply the term and we get,
$\Rightarrow$$E\left( {{X^2}} \right) = 18.2004$
Now,
$\Rightarrow$${\sigma ^2} = Var\left( X \right) = E\left( {{X^2}} \right) - {\mu ^2}$
Let us putting the value and we get
$\Rightarrow$${\sigma ^2} = 18.2004 - {\left( {3.64008} \right)^2}$
On squaring the term and we get,
$\Rightarrow$${\sigma ^2} = 18.2004 - 13.2501$
Let us subtract the term and we get,
$\Rightarrow$${\sigma ^2} = 4.9503$
Hence we get the required variance.
Therefore the required mean and variance for the probability density functions are $3.64008$ and $4.9503$.
Note: The probability density function has the following properties:
$P\left( {a \leqslant x \leqslant b} \right) = \int_a^b {f\left( x \right)dx} $
It is non-negative for all real $X$
The probabilities are measured over intervals and not a single point.
First we are going to find the value of $k$ by using the probability density function.
Next we are going to find the mean and variance of $X$ for the probability density function.
Hence we can get the required solution.
Formula used: The probability density function is written in the form
$\int\limits_{ - \infty }^\infty {f\left( x \right)dx = 1} $
Mean of the probability density function is written as
$\mu = E\left( X \right) = \int\limits_{ - \infty }^\infty {xf\left( x \right)dx} $
Variance of the probability density function is written as
${\sigma ^2} = Var\left( X \right) = E\left( {{X^2}} \right) - {\mu ^2}$
${\sigma ^2} = \int\limits_{ - \infty }^\infty {{x^2}f\left( x \right)dx - {\mu ^2}} $
Complete step by step solution:
In this question, we are going to find the value of $k$ and then find mean and variance of $X$ .
a.)First we are going to find the value of $k$ by using the probability density function.
Since $f\left( x \right)$is a probability density function$\int\limits_{ - \infty }^\infty {f\left( x \right)dx = 1} $
That is $\int\limits_1^9 {f\left( x \right)dx = 1} $
Substitute the value of $f\left( x \right)$
$ \Rightarrow \int\limits_1^9 {\dfrac{k}{x}dx = 1} $
$k$is a constant and it can be taken outside
$ \Rightarrow k\int\limits_1^9 {\dfrac{1}{x}dx = 1} $
Integration of $\dfrac{1}{x}dx$ is $\ln \left| x \right| + c$
$ \Rightarrow k\left[ {\ln \left| x \right| + C} \right]_1^9 = 1$
Substitute the value of upper and lower limit in $x,$ that is upper limit minus lower limit, we get
$ \Rightarrow k\left[ {\left( {\ln \left| 9 \right| + C} \right) - \left( {\ln \left| 1 \right| + C} \right)} \right] = 1$
$ \Rightarrow k\left[ {2.19772} \right] = 1$
$ \Rightarrow k = \dfrac{1}{{2.19772}}$
$ \Rightarrow k = 0.45501$
Hence we get the value of $k$ as $0.45501$
b.) now we are going to find the mean and variance of the probability density function.
$\mu = \int\limits_{ - \infty }^\infty {xf\left( x \right)dx} $
Substitute the value of $f\left( x \right)$
$ \Rightarrow \mu = \int\limits_1^9 {x \times \dfrac{k}{x}dx} $
$ \Rightarrow \mu = \int\limits_1^9 {kdx} $
$k$is a constant and it can be taken outside
$ \Rightarrow \mu = k\int\limits_1^9 {dx} $
$ \Rightarrow \mu = k\left[ {x + C} \right]_1^9$
Substitute the value of upper and lower limit in $x,$ that is upper limit minus lower limit, we get
$ \Rightarrow \mu = k\left[ {\left( {9 + C} \right) - \left( {1 + C} \right)} \right]$
$ \Rightarrow \mu = k\left[ 8 \right]$
$ \Rightarrow \mu = \left( {0.45501} \right)\left[ 8 \right]$
$ \Rightarrow \mu = 3.64008$
Hence we get the required mean value
$\Rightarrow$${\sigma ^2} = \int\limits_{ - \infty }^\infty {{x^2}f\left( x \right)dx - {\mu ^2}} $
$\Rightarrow$$E\left( {{X^2}} \right) = \int\limits_{ - \infty }^\infty {{x^2}f\left( x \right)dx} $
Substitute the value of $f\left( x \right)$
$\Rightarrow$$E\left( {{X^2}} \right) = \int\limits_1^9 {{x^2}\dfrac{k}{x}dx} $
$\Rightarrow$$E\left( {{X^2}} \right) = \int\limits_1^9 {kxdx} $
$k$ is a constant and it can be taken outside
$\Rightarrow$$E\left( {{X^2}} \right) = k\int\limits_1^9 {xdx} $
$\Rightarrow$$E\left( {{X^2}} \right) = k\left[ {\dfrac{{{x^2}}}{2}} \right]_1^9$
Substitute the value of upper and lower limit in $x,$ that is upper limit minus lower limit, we get
$\Rightarrow$$E\left( {{X^2}} \right) = k\left[ {\left( {\dfrac{{{9^2}}}{2}} \right) - \dfrac{{{1^2}}}{2}} \right]$
Let us square the term and we get
$\Rightarrow$$E\left( {{X^2}} \right) = k\left[ {\left( {\dfrac{{81}}{2}} \right) - \dfrac{1}{2}} \right]$
On subtracting the term and we get
$\Rightarrow$$E\left( {{X^2}} \right) = k\left[ {\left( {\dfrac{{80}}{2}} \right)} \right]$
On rewriting the term and we get
$\Rightarrow$$E\left( {{X^2}} \right) = 0.45501\left[ {\left( {40} \right)} \right]$
Let us multiply the term and we get,
$\Rightarrow$$E\left( {{X^2}} \right) = 18.2004$
Now,
$\Rightarrow$${\sigma ^2} = Var\left( X \right) = E\left( {{X^2}} \right) - {\mu ^2}$
Let us putting the value and we get
$\Rightarrow$${\sigma ^2} = 18.2004 - {\left( {3.64008} \right)^2}$
On squaring the term and we get,
$\Rightarrow$${\sigma ^2} = 18.2004 - 13.2501$
Let us subtract the term and we get,
$\Rightarrow$${\sigma ^2} = 4.9503$
Hence we get the required variance.
Therefore the required mean and variance for the probability density functions are $3.64008$ and $4.9503$.
Note: The probability density function has the following properties:
$P\left( {a \leqslant x \leqslant b} \right) = \int_a^b {f\left( x \right)dx} $
It is non-negative for all real $X$
The probabilities are measured over intervals and not a single point.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE

State the laws of reflection of light
