
A continuous random variable $X$ has probability density function given by
\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{k}{x}\,\,\,\,\,\,1 \leqslant x \leqslant 9} \\
{0\,\,\,\,\,\,x < 1\,or\,x > 9}
\end{array}} \right.\]
a. Find the value of $k.$
b. Find the mean and variance of $X$, giving your answer correct to three decimal places.
Answer
532.2k+ views
Hint: In this question, we are going to find the value of $k$ and then to find mean and variance of $X$.
First we are going to find the value of $k$ by using the probability density function.
Next we are going to find the mean and variance of $X$ for the probability density function.
Hence we can get the required solution.
Formula used: The probability density function is written in the form
$\int\limits_{ - \infty }^\infty {f\left( x \right)dx = 1} $
Mean of the probability density function is written as
$\mu = E\left( X \right) = \int\limits_{ - \infty }^\infty {xf\left( x \right)dx} $
Variance of the probability density function is written as
${\sigma ^2} = Var\left( X \right) = E\left( {{X^2}} \right) - {\mu ^2}$
${\sigma ^2} = \int\limits_{ - \infty }^\infty {{x^2}f\left( x \right)dx - {\mu ^2}} $
Complete step by step solution:
In this question, we are going to find the value of $k$ and then find mean and variance of $X$ .
a.)First we are going to find the value of $k$ by using the probability density function.
Since $f\left( x \right)$is a probability density function$\int\limits_{ - \infty }^\infty {f\left( x \right)dx = 1} $
That is $\int\limits_1^9 {f\left( x \right)dx = 1} $
Substitute the value of $f\left( x \right)$
$ \Rightarrow \int\limits_1^9 {\dfrac{k}{x}dx = 1} $
$k$is a constant and it can be taken outside
$ \Rightarrow k\int\limits_1^9 {\dfrac{1}{x}dx = 1} $
Integration of $\dfrac{1}{x}dx$ is $\ln \left| x \right| + c$
$ \Rightarrow k\left[ {\ln \left| x \right| + C} \right]_1^9 = 1$
Substitute the value of upper and lower limit in $x,$ that is upper limit minus lower limit, we get
$ \Rightarrow k\left[ {\left( {\ln \left| 9 \right| + C} \right) - \left( {\ln \left| 1 \right| + C} \right)} \right] = 1$
$ \Rightarrow k\left[ {2.19772} \right] = 1$
$ \Rightarrow k = \dfrac{1}{{2.19772}}$
$ \Rightarrow k = 0.45501$
Hence we get the value of $k$ as $0.45501$
b.) now we are going to find the mean and variance of the probability density function.
$\mu = \int\limits_{ - \infty }^\infty {xf\left( x \right)dx} $
Substitute the value of $f\left( x \right)$
$ \Rightarrow \mu = \int\limits_1^9 {x \times \dfrac{k}{x}dx} $
$ \Rightarrow \mu = \int\limits_1^9 {kdx} $
$k$is a constant and it can be taken outside
$ \Rightarrow \mu = k\int\limits_1^9 {dx} $
$ \Rightarrow \mu = k\left[ {x + C} \right]_1^9$
Substitute the value of upper and lower limit in $x,$ that is upper limit minus lower limit, we get
$ \Rightarrow \mu = k\left[ {\left( {9 + C} \right) - \left( {1 + C} \right)} \right]$
$ \Rightarrow \mu = k\left[ 8 \right]$
$ \Rightarrow \mu = \left( {0.45501} \right)\left[ 8 \right]$
$ \Rightarrow \mu = 3.64008$
Hence we get the required mean value
$\Rightarrow$${\sigma ^2} = \int\limits_{ - \infty }^\infty {{x^2}f\left( x \right)dx - {\mu ^2}} $
$\Rightarrow$$E\left( {{X^2}} \right) = \int\limits_{ - \infty }^\infty {{x^2}f\left( x \right)dx} $
Substitute the value of $f\left( x \right)$
$\Rightarrow$$E\left( {{X^2}} \right) = \int\limits_1^9 {{x^2}\dfrac{k}{x}dx} $
$\Rightarrow$$E\left( {{X^2}} \right) = \int\limits_1^9 {kxdx} $
$k$ is a constant and it can be taken outside
$\Rightarrow$$E\left( {{X^2}} \right) = k\int\limits_1^9 {xdx} $
$\Rightarrow$$E\left( {{X^2}} \right) = k\left[ {\dfrac{{{x^2}}}{2}} \right]_1^9$
Substitute the value of upper and lower limit in $x,$ that is upper limit minus lower limit, we get
$\Rightarrow$$E\left( {{X^2}} \right) = k\left[ {\left( {\dfrac{{{9^2}}}{2}} \right) - \dfrac{{{1^2}}}{2}} \right]$
Let us square the term and we get
$\Rightarrow$$E\left( {{X^2}} \right) = k\left[ {\left( {\dfrac{{81}}{2}} \right) - \dfrac{1}{2}} \right]$
On subtracting the term and we get
$\Rightarrow$$E\left( {{X^2}} \right) = k\left[ {\left( {\dfrac{{80}}{2}} \right)} \right]$
On rewriting the term and we get
$\Rightarrow$$E\left( {{X^2}} \right) = 0.45501\left[ {\left( {40} \right)} \right]$
Let us multiply the term and we get,
$\Rightarrow$$E\left( {{X^2}} \right) = 18.2004$
Now,
$\Rightarrow$${\sigma ^2} = Var\left( X \right) = E\left( {{X^2}} \right) - {\mu ^2}$
Let us putting the value and we get
$\Rightarrow$${\sigma ^2} = 18.2004 - {\left( {3.64008} \right)^2}$
On squaring the term and we get,
$\Rightarrow$${\sigma ^2} = 18.2004 - 13.2501$
Let us subtract the term and we get,
$\Rightarrow$${\sigma ^2} = 4.9503$
Hence we get the required variance.
Therefore the required mean and variance for the probability density functions are $3.64008$ and $4.9503$.
Note: The probability density function has the following properties:
$P\left( {a \leqslant x \leqslant b} \right) = \int_a^b {f\left( x \right)dx} $
It is non-negative for all real $X$
The probabilities are measured over intervals and not a single point.
First we are going to find the value of $k$ by using the probability density function.
Next we are going to find the mean and variance of $X$ for the probability density function.
Hence we can get the required solution.
Formula used: The probability density function is written in the form
$\int\limits_{ - \infty }^\infty {f\left( x \right)dx = 1} $
Mean of the probability density function is written as
$\mu = E\left( X \right) = \int\limits_{ - \infty }^\infty {xf\left( x \right)dx} $
Variance of the probability density function is written as
${\sigma ^2} = Var\left( X \right) = E\left( {{X^2}} \right) - {\mu ^2}$
${\sigma ^2} = \int\limits_{ - \infty }^\infty {{x^2}f\left( x \right)dx - {\mu ^2}} $
Complete step by step solution:
In this question, we are going to find the value of $k$ and then find mean and variance of $X$ .
a.)First we are going to find the value of $k$ by using the probability density function.
Since $f\left( x \right)$is a probability density function$\int\limits_{ - \infty }^\infty {f\left( x \right)dx = 1} $
That is $\int\limits_1^9 {f\left( x \right)dx = 1} $
Substitute the value of $f\left( x \right)$
$ \Rightarrow \int\limits_1^9 {\dfrac{k}{x}dx = 1} $
$k$is a constant and it can be taken outside
$ \Rightarrow k\int\limits_1^9 {\dfrac{1}{x}dx = 1} $
Integration of $\dfrac{1}{x}dx$ is $\ln \left| x \right| + c$
$ \Rightarrow k\left[ {\ln \left| x \right| + C} \right]_1^9 = 1$
Substitute the value of upper and lower limit in $x,$ that is upper limit minus lower limit, we get
$ \Rightarrow k\left[ {\left( {\ln \left| 9 \right| + C} \right) - \left( {\ln \left| 1 \right| + C} \right)} \right] = 1$
$ \Rightarrow k\left[ {2.19772} \right] = 1$
$ \Rightarrow k = \dfrac{1}{{2.19772}}$
$ \Rightarrow k = 0.45501$
Hence we get the value of $k$ as $0.45501$
b.) now we are going to find the mean and variance of the probability density function.
$\mu = \int\limits_{ - \infty }^\infty {xf\left( x \right)dx} $
Substitute the value of $f\left( x \right)$
$ \Rightarrow \mu = \int\limits_1^9 {x \times \dfrac{k}{x}dx} $
$ \Rightarrow \mu = \int\limits_1^9 {kdx} $
$k$is a constant and it can be taken outside
$ \Rightarrow \mu = k\int\limits_1^9 {dx} $
$ \Rightarrow \mu = k\left[ {x + C} \right]_1^9$
Substitute the value of upper and lower limit in $x,$ that is upper limit minus lower limit, we get
$ \Rightarrow \mu = k\left[ {\left( {9 + C} \right) - \left( {1 + C} \right)} \right]$
$ \Rightarrow \mu = k\left[ 8 \right]$
$ \Rightarrow \mu = \left( {0.45501} \right)\left[ 8 \right]$
$ \Rightarrow \mu = 3.64008$
Hence we get the required mean value
$\Rightarrow$${\sigma ^2} = \int\limits_{ - \infty }^\infty {{x^2}f\left( x \right)dx - {\mu ^2}} $
$\Rightarrow$$E\left( {{X^2}} \right) = \int\limits_{ - \infty }^\infty {{x^2}f\left( x \right)dx} $
Substitute the value of $f\left( x \right)$
$\Rightarrow$$E\left( {{X^2}} \right) = \int\limits_1^9 {{x^2}\dfrac{k}{x}dx} $
$\Rightarrow$$E\left( {{X^2}} \right) = \int\limits_1^9 {kxdx} $
$k$ is a constant and it can be taken outside
$\Rightarrow$$E\left( {{X^2}} \right) = k\int\limits_1^9 {xdx} $
$\Rightarrow$$E\left( {{X^2}} \right) = k\left[ {\dfrac{{{x^2}}}{2}} \right]_1^9$
Substitute the value of upper and lower limit in $x,$ that is upper limit minus lower limit, we get
$\Rightarrow$$E\left( {{X^2}} \right) = k\left[ {\left( {\dfrac{{{9^2}}}{2}} \right) - \dfrac{{{1^2}}}{2}} \right]$
Let us square the term and we get
$\Rightarrow$$E\left( {{X^2}} \right) = k\left[ {\left( {\dfrac{{81}}{2}} \right) - \dfrac{1}{2}} \right]$
On subtracting the term and we get
$\Rightarrow$$E\left( {{X^2}} \right) = k\left[ {\left( {\dfrac{{80}}{2}} \right)} \right]$
On rewriting the term and we get
$\Rightarrow$$E\left( {{X^2}} \right) = 0.45501\left[ {\left( {40} \right)} \right]$
Let us multiply the term and we get,
$\Rightarrow$$E\left( {{X^2}} \right) = 18.2004$
Now,
$\Rightarrow$${\sigma ^2} = Var\left( X \right) = E\left( {{X^2}} \right) - {\mu ^2}$
Let us putting the value and we get
$\Rightarrow$${\sigma ^2} = 18.2004 - {\left( {3.64008} \right)^2}$
On squaring the term and we get,
$\Rightarrow$${\sigma ^2} = 18.2004 - 13.2501$
Let us subtract the term and we get,
$\Rightarrow$${\sigma ^2} = 4.9503$
Hence we get the required variance.
Therefore the required mean and variance for the probability density functions are $3.64008$ and $4.9503$.
Note: The probability density function has the following properties:
$P\left( {a \leqslant x \leqslant b} \right) = \int_a^b {f\left( x \right)dx} $
It is non-negative for all real $X$
The probabilities are measured over intervals and not a single point.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

