
A contest consists of predicting the results namely (draw, win, defeat) of 20 cricket matches. The number of ways in which entry contains at least 5 correct answers is
A. $ {3^{20}}\sum\limits_{r = 0}^{20} {{}^{20}{C_r}{2^r}} $
B. $ {3^{20}} - \sum\limits_{r = 0}^4 {{}^{20}{C_r}{2^{20 - r}}} $
C. $ \sum\limits_{r = 1}^5 {{}^{20}{C_r}} $
D. $ \sum\limits_{r = 6}^{20} {{}^{10}{C_r}{3^r}} $
Answer
565.5k+ views
Hint: There are 3 possible outcomes which are draw, win and defeat and 20 trials (cricket matches). So the total possible outcomes can be $ {3^{20}} $ . To get the no. of ways the entry contains at least 5 correct answers, we have to subtract the (no. of ways the entry contains 0, 1, 2, 3, 4 correct answers) from the (total no. of ways).
Complete step-by-step answer:
We are given that a contest consists of predicting the results namely (draw, win, defeat) of 20 cricket matches.
We have to find the no. of ways in which entry contains at least 5 correct answers.
The no. of ways the entry contains at least 5 correct answers is equal to total possible outcomes minus no. of ways the entry contains 0, 1, 2, 3, 4 correct answers (less than 5 correct answers).
When the match is drawn it cannot be win and defeat, when it is win it cannot be draw and defeat and so on, this means when there is 1 success then there are 2 failures.
Therefore, the Total number of outcomes $ {3^{20}} $ can be divided as
$\Rightarrow {}^{20}{C_0}{2^{20}} + {}^{20}{C_1}{2^{19}} + {}^{20}{C_2}{2^{18}} + ...... + {}^{20}{C_{20}}{2^0} $
Number of ways entry contains 0, 1, 2, 3, 4 correct answers is
$\Rightarrow {}^{20}{C_0}{1^0}{.2^{20}} + {}^{20}{C_1}{1^1}{.2^{19}} + {}^{20}{C_2}{1^2}{.2^{18}} + {}^{20}{C_3}{1^3}{.2^{17}} + {}^{20}{C_4}{1^4}{.2^{16}} = \sum\limits_{r = 0}^4 {{}^{20}{C_r}{1^r}{{.2}^{20 - r}} = } \sum\limits_{r = 0}^4 {{}^{20}{C_r}{2^{20 - r}}} $
The no. of ways the entry contains at least 5 correct answers is
$\Rightarrow {3^{20}} - \sum\limits_{r = 0}^4 {{}^{20}{C_r}{2^{20 - r}}} $
The correct option is Option B, $ {3^{20}} - \sum\limits_{r = 0}^4 {{}^{20}{C_r}{2^{20 - r}}} $ .
So, the correct answer is “Option B”.
Note: We know that the expansion of $ {\left( {x + y} \right)^n} $ using binomial expansion is $ {}^n{C_0}{x^0}{y^n} + {}^n{C_1}{x^1}{y^{n - 1}} + {}^n{C_2}{x^2}{y^{n - 2}} + .... + {}^n{C_n}{x^n}{y^0} $
When the value of x is 1, y is 2 and n is 20, then
$
\Rightarrow {\left( {1 + 2} \right)^{20}} = {}^{20}{C_0}{1^0}{2^{20}} + {}^{20}{C_1}{1^1}{2^{19}} + {}^{20}{C_2}{1^2}{2^{18}} + .... + {}^{20}{C_{20}}{1^{20}}{2^0} \\
\Rightarrow {3^{20}} = {}^{20}{C_0}{2^{20}} + {}^{20}{C_1}{2^{19}} + {}^{20}{C_2}{2^{18}} + ...... + {}^{20}{C_{20}}{2^0} \\
$
Complete step-by-step answer:
We are given that a contest consists of predicting the results namely (draw, win, defeat) of 20 cricket matches.
We have to find the no. of ways in which entry contains at least 5 correct answers.
The no. of ways the entry contains at least 5 correct answers is equal to total possible outcomes minus no. of ways the entry contains 0, 1, 2, 3, 4 correct answers (less than 5 correct answers).
When the match is drawn it cannot be win and defeat, when it is win it cannot be draw and defeat and so on, this means when there is 1 success then there are 2 failures.
Therefore, the Total number of outcomes $ {3^{20}} $ can be divided as
$\Rightarrow {}^{20}{C_0}{2^{20}} + {}^{20}{C_1}{2^{19}} + {}^{20}{C_2}{2^{18}} + ...... + {}^{20}{C_{20}}{2^0} $
Number of ways entry contains 0, 1, 2, 3, 4 correct answers is
$\Rightarrow {}^{20}{C_0}{1^0}{.2^{20}} + {}^{20}{C_1}{1^1}{.2^{19}} + {}^{20}{C_2}{1^2}{.2^{18}} + {}^{20}{C_3}{1^3}{.2^{17}} + {}^{20}{C_4}{1^4}{.2^{16}} = \sum\limits_{r = 0}^4 {{}^{20}{C_r}{1^r}{{.2}^{20 - r}} = } \sum\limits_{r = 0}^4 {{}^{20}{C_r}{2^{20 - r}}} $
The no. of ways the entry contains at least 5 correct answers is
$\Rightarrow {3^{20}} - \sum\limits_{r = 0}^4 {{}^{20}{C_r}{2^{20 - r}}} $
The correct option is Option B, $ {3^{20}} - \sum\limits_{r = 0}^4 {{}^{20}{C_r}{2^{20 - r}}} $ .
So, the correct answer is “Option B”.
Note: We know that the expansion of $ {\left( {x + y} \right)^n} $ using binomial expansion is $ {}^n{C_0}{x^0}{y^n} + {}^n{C_1}{x^1}{y^{n - 1}} + {}^n{C_2}{x^2}{y^{n - 2}} + .... + {}^n{C_n}{x^n}{y^0} $
When the value of x is 1, y is 2 and n is 20, then
$
\Rightarrow {\left( {1 + 2} \right)^{20}} = {}^{20}{C_0}{1^0}{2^{20}} + {}^{20}{C_1}{1^1}{2^{19}} + {}^{20}{C_2}{1^2}{2^{18}} + .... + {}^{20}{C_{20}}{1^{20}}{2^0} \\
\Rightarrow {3^{20}} = {}^{20}{C_0}{2^{20}} + {}^{20}{C_1}{2^{19}} + {}^{20}{C_2}{2^{18}} + ...... + {}^{20}{C_{20}}{2^0} \\
$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

