
A conical vessel of radius 6cm and height 8 cm is completely filled with water. A sphere is lowered into the water and its size is such that when it touches the sides it is just immersed. What fraction of water overflows?
Answer
517.9k+ views
Hint: When the sphere just touches the inner surface of the cone, then the surface of the cone is nothing but a tangent to the sphere. Also, the centre of the sphere is R distance below the surface of the base of the cone (Where R is the radius of the sphere)
The volume of a sphere is
\[=\dfrac{4}{3}\pi {{r}^{3}}\]
(Where ‘r ‘ is the radius of the sphere)
The volume of a cone is
\[=\dfrac{1}{3}\pi {{r}^{2}}h\]
(Where ‘r’ is the radius of the cone and’ h’ is the height of the cone)
Complete step-by-step answer:
As mentioned in the question, the sphere is completely immersed in the cone.
Now, by referring to the figure, we can say that
\[\begin{align}
& \angle CAB={{\tan }^{-1}}\dfrac{8}{6} \\
& \angle CAB={{\tan }^{-1}}\dfrac{4}{3} \\
& \angle CAB={{53}^{\circ }} \\
\end{align}\]
Now, if
\[\begin{align}
& \angle CAB={{53}^{\circ }} \\
& \therefore \angle BCA={{37}^{\circ }} \\
\end{align}\]
Now, on applying sin formula in \[\vartriangle PCO\] , we get
\[\begin{align}
& \sin {{37}^{\circ }}=\dfrac{R}{\left( 8-R \right)} \\
& \dfrac{3}{5}=\dfrac{R}{\left( 8-R \right)} \\
& 24-3R=5R \\
& R=3 \\
\end{align}\]
(Where R is the radius of the sphere)
Therefore, using the formula for finding the volume of a sphere as it is given in the hint, we get
\[\begin{align}
& =\dfrac{4}{3}\pi {{(3)}^{3}} \\
& =4\times 9\pi \\
& =36\pi \\
\end{align}\]
Now, the fraction of water which overflows is given as follows
\[\begin{align}
& =\dfrac{36\pi }{\dfrac{1}{3}\pi {{6}^{2}}\times 8} \\
& =\dfrac{3}{8} \\
\end{align}\]
Hence, the fraction of water that overflows is \[\dfrac{3}{8}\] .
Note: The students can make an error if they don’t know the formulas for volume of sphere and cone and also the trigonometric ratio which are given in hint as
The volume of a sphere is
\[=\dfrac{4}{3}\pi {{r}^{3}}\]
(Where ‘r ‘ is the radius of the sphere)
The volume of a cone is
\[=\dfrac{1}{3}\pi {{r}^{2}}h\]
(where ‘r’ is the radius of the cone and’ h’ is the height of the cone)
The volume of a sphere is
\[=\dfrac{4}{3}\pi {{r}^{3}}\]
(Where ‘r ‘ is the radius of the sphere)
The volume of a cone is
\[=\dfrac{1}{3}\pi {{r}^{2}}h\]
(Where ‘r’ is the radius of the cone and’ h’ is the height of the cone)
Complete step-by-step answer:
As mentioned in the question, the sphere is completely immersed in the cone.
Now, by referring to the figure, we can say that
\[\begin{align}
& \angle CAB={{\tan }^{-1}}\dfrac{8}{6} \\
& \angle CAB={{\tan }^{-1}}\dfrac{4}{3} \\
& \angle CAB={{53}^{\circ }} \\
\end{align}\]
Now, if
\[\begin{align}
& \angle CAB={{53}^{\circ }} \\
& \therefore \angle BCA={{37}^{\circ }} \\
\end{align}\]
Now, on applying sin formula in \[\vartriangle PCO\] , we get
\[\begin{align}
& \sin {{37}^{\circ }}=\dfrac{R}{\left( 8-R \right)} \\
& \dfrac{3}{5}=\dfrac{R}{\left( 8-R \right)} \\
& 24-3R=5R \\
& R=3 \\
\end{align}\]
(Where R is the radius of the sphere)
Therefore, using the formula for finding the volume of a sphere as it is given in the hint, we get
\[\begin{align}
& =\dfrac{4}{3}\pi {{(3)}^{3}} \\
& =4\times 9\pi \\
& =36\pi \\
\end{align}\]
Now, the fraction of water which overflows is given as follows
\[\begin{align}
& =\dfrac{36\pi }{\dfrac{1}{3}\pi {{6}^{2}}\times 8} \\
& =\dfrac{3}{8} \\
\end{align}\]
Hence, the fraction of water that overflows is \[\dfrac{3}{8}\] .
Note: The students can make an error if they don’t know the formulas for volume of sphere and cone and also the trigonometric ratio which are given in hint as
The volume of a sphere is
\[=\dfrac{4}{3}\pi {{r}^{3}}\]
(Where ‘r ‘ is the radius of the sphere)
The volume of a cone is
\[=\dfrac{1}{3}\pi {{r}^{2}}h\]
(where ‘r’ is the radius of the cone and’ h’ is the height of the cone)
Recently Updated Pages
What happens to glucose which enters nephron along class 10 biology CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

When the JanmiKudian Act was passed that granted the class 10 social science CBSE

A sector containing an angle of 120 circ is cut off class 10 maths CBSE

The sum of digits of a two digit number is 13 If t-class-10-maths-ICSE

Trending doubts
The shortest day of the year in India

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

What is the missing number in the sequence 259142027 class 10 maths CBSE

10 examples of evaporation in daily life with explanations

State and prove the Pythagoras theorem-class-10-maths-CBSE

