
A complex number z is said to be unimodular if |z| $ \ne 1 $ . If $ {z_1}\,\,and\,\,{z_2} $ are complex numbers such that $ \dfrac{{{z_1} - 2{z_2}}}{{2 - {z_1}{{\overline z }_2}}} $ is unimodular and $ {z_2} $ is not unimodular.
Then, the points $ {z_1} $ lies on a.
(a) Straight line parallel to X-axis
(b) Straight line parallel to Y-axis
(c) Circle of radius $ 2 $
(d) Circle of radius $ \sqrt 2 $
Answer
581.4k+ views
Hint: Since, it is given that $ \dfrac{{{z_1} - 2{z_2}}}{{2 - {z_1}{{\overline z }_2}}} $ is unimodular. Therefore equate its mode equal to one and then remove mode by doing squaring both sides and on simplifying by using the following mentioned formulas of complex one can easily find the correct option.
$ For\,\,any\,\,z = x + iy,\,\,\,\,|z{|^2} = z.\overline z ,\,\,\,\,\,\,and\,\,|x + iy| = \sqrt {{x^2} + {y^2}} $
Complete step-by-step answer:
Since it is given that $ \dfrac{{{z_1} - 2{z_2}}}{{2 - {z_1}{{\overline z }_2}}} $ is unimodular.
Therefore $
{\dfrac{{{z_1} - 2{z_2}}}{{2 - {z_1}{{\overline z }_2}}}}
= 1 $
$ \Rightarrow |{z_1} - 2{z_2}| = |2 - {z_1}{\overline z _2}| $
To remove mode from the above equation. We do squaring both side
\[
{\left( {{z_1} - 2{z_2}} \right)^2} = {\left( {2 - {z_1}{{\overline z }_2}} \right)^2} \\
\Rightarrow \left( {{z_1} - 2{z_2}} \right).\left( {{{\overline z }_1} - 2{{\overline z }_2}} \right) = \left( {2 - {z_1}{{\overline z }_2}} \right).\left( {2 - {{\overline z }_1}{z_2}} \right) \\
\Rightarrow {z_1}{\overline z _1} - 2.{z_2}.{\overline z _1} - 2.{z_1}.{\overline z _2} + 4.{z_2}.{\overline z _2} = 4 - 2.{z_2}.{\overline z _1} - 2.{z_1}.{\overline z _2} + {\overline z _1}.{z_2}{z_1}{\overline z _2} \\
\Rightarrow {({z_1})^2} + 4.{({z_2})^2} = 4 + {\overline z _1}.{z_2}{z_1}{\overline z _2} \\
\Rightarrow |{z_1}{|^2} + 4|{z_2}{|^2} = 4 + |{z_1}{|^2}|{z_2}{|^2} \\
\Rightarrow |{z_1}{|^2} + 4|{z_2}{|^2} - 4 - |{z_1}{|^2}|{z_2}{|^2} = 0 \\
\Rightarrow |{z_1}{|^2} - |{z_1}{|^2}|{z_2}{|^2} + 4|{z_2}{|^2} - \,4 = 0 \\
\Rightarrow |{z_1}{|^2}\left( {1 - |{z_2}{|^2}} \right) - 4\left( {1 - |{z_2}{|^2}} \right) = 0 \\
\Rightarrow \left( {1 - |{z_2}{|^2}} \right)\left( {|{z_1}{|^2} - 4} \right) = 0 \\
\Rightarrow \left( {1 - |{z_2}{|^2}} \right) = 0\,\,\,\,or\,\,\left( {|{z_1}{|^2} - 4} \right) = 0 \\
\Rightarrow |{z_2}{|^2} = 1\,\,or\,\,|{z_1}{|^2} = 4 \\
\Rightarrow |{z_2}| = 1\,\,\,or\,\,|{z_1}| = 2 \\
\]
But since it is given that $ {z_2} \ne 1 $
Therefore, we have $ |{z_1}| = 2 $
Or we can write it as $ \sqrt {({x^2} + {y^2})} = 2\,\,\,\,\,\,\,\,\,\,\,\,\left( {\because |z| = \sqrt {{x^2} + {y^2}} } \right) $
Squaring both side we have
$ {x^2} + {y^2} = 4 $
Which is an equation of circle having centre at origin and of radius $ 2\,units $ .
Hence, from above we see the out of the given four options, option (C) is the correct option.
So, the correct answer is “Option C”.
Note: We know that for complex numbers we always take z = x + iy and to find solutions to any complex problems we start with the given condition and then simplify the given problem by using different properties of complex numbers.
$ For\,\,any\,\,z = x + iy,\,\,\,\,|z{|^2} = z.\overline z ,\,\,\,\,\,\,and\,\,|x + iy| = \sqrt {{x^2} + {y^2}} $
Complete step-by-step answer:
Since it is given that $ \dfrac{{{z_1} - 2{z_2}}}{{2 - {z_1}{{\overline z }_2}}} $ is unimodular.
Therefore $
{\dfrac{{{z_1} - 2{z_2}}}{{2 - {z_1}{{\overline z }_2}}}}
= 1 $
$ \Rightarrow |{z_1} - 2{z_2}| = |2 - {z_1}{\overline z _2}| $
To remove mode from the above equation. We do squaring both side
\[
{\left( {{z_1} - 2{z_2}} \right)^2} = {\left( {2 - {z_1}{{\overline z }_2}} \right)^2} \\
\Rightarrow \left( {{z_1} - 2{z_2}} \right).\left( {{{\overline z }_1} - 2{{\overline z }_2}} \right) = \left( {2 - {z_1}{{\overline z }_2}} \right).\left( {2 - {{\overline z }_1}{z_2}} \right) \\
\Rightarrow {z_1}{\overline z _1} - 2.{z_2}.{\overline z _1} - 2.{z_1}.{\overline z _2} + 4.{z_2}.{\overline z _2} = 4 - 2.{z_2}.{\overline z _1} - 2.{z_1}.{\overline z _2} + {\overline z _1}.{z_2}{z_1}{\overline z _2} \\
\Rightarrow {({z_1})^2} + 4.{({z_2})^2} = 4 + {\overline z _1}.{z_2}{z_1}{\overline z _2} \\
\Rightarrow |{z_1}{|^2} + 4|{z_2}{|^2} = 4 + |{z_1}{|^2}|{z_2}{|^2} \\
\Rightarrow |{z_1}{|^2} + 4|{z_2}{|^2} - 4 - |{z_1}{|^2}|{z_2}{|^2} = 0 \\
\Rightarrow |{z_1}{|^2} - |{z_1}{|^2}|{z_2}{|^2} + 4|{z_2}{|^2} - \,4 = 0 \\
\Rightarrow |{z_1}{|^2}\left( {1 - |{z_2}{|^2}} \right) - 4\left( {1 - |{z_2}{|^2}} \right) = 0 \\
\Rightarrow \left( {1 - |{z_2}{|^2}} \right)\left( {|{z_1}{|^2} - 4} \right) = 0 \\
\Rightarrow \left( {1 - |{z_2}{|^2}} \right) = 0\,\,\,\,or\,\,\left( {|{z_1}{|^2} - 4} \right) = 0 \\
\Rightarrow |{z_2}{|^2} = 1\,\,or\,\,|{z_1}{|^2} = 4 \\
\Rightarrow |{z_2}| = 1\,\,\,or\,\,|{z_1}| = 2 \\
\]
But since it is given that $ {z_2} \ne 1 $
Therefore, we have $ |{z_1}| = 2 $
Or we can write it as $ \sqrt {({x^2} + {y^2})} = 2\,\,\,\,\,\,\,\,\,\,\,\,\left( {\because |z| = \sqrt {{x^2} + {y^2}} } \right) $
Squaring both side we have
$ {x^2} + {y^2} = 4 $
Which is an equation of circle having centre at origin and of radius $ 2\,units $ .
Hence, from above we see the out of the given four options, option (C) is the correct option.
So, the correct answer is “Option C”.
Note: We know that for complex numbers we always take z = x + iy and to find solutions to any complex problems we start with the given condition and then simplify the given problem by using different properties of complex numbers.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

In a human foetus the limbs and digits develop after class 12 biology CBSE

AABbCc genotype forms how many types of gametes a 4 class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

