
A complex number z is said to be unimodular if |z| $ \ne 1 $ . If $ {z_1}\,\,and\,\,{z_2} $ are complex numbers such that $ \dfrac{{{z_1} - 2{z_2}}}{{2 - {z_1}{{\overline z }_2}}} $ is unimodular and $ {z_2} $ is not unimodular.
Then, the points $ {z_1} $ lies on a.
(a) Straight line parallel to X-axis
(b) Straight line parallel to Y-axis
(c) Circle of radius $ 2 $
(d) Circle of radius $ \sqrt 2 $
Answer
565.5k+ views
Hint: Since, it is given that $ \dfrac{{{z_1} - 2{z_2}}}{{2 - {z_1}{{\overline z }_2}}} $ is unimodular. Therefore equate its mode equal to one and then remove mode by doing squaring both sides and on simplifying by using the following mentioned formulas of complex one can easily find the correct option.
$ For\,\,any\,\,z = x + iy,\,\,\,\,|z{|^2} = z.\overline z ,\,\,\,\,\,\,and\,\,|x + iy| = \sqrt {{x^2} + {y^2}} $
Complete step-by-step answer:
Since it is given that $ \dfrac{{{z_1} - 2{z_2}}}{{2 - {z_1}{{\overline z }_2}}} $ is unimodular.
Therefore $
{\dfrac{{{z_1} - 2{z_2}}}{{2 - {z_1}{{\overline z }_2}}}}
= 1 $
$ \Rightarrow |{z_1} - 2{z_2}| = |2 - {z_1}{\overline z _2}| $
To remove mode from the above equation. We do squaring both side
\[
{\left( {{z_1} - 2{z_2}} \right)^2} = {\left( {2 - {z_1}{{\overline z }_2}} \right)^2} \\
\Rightarrow \left( {{z_1} - 2{z_2}} \right).\left( {{{\overline z }_1} - 2{{\overline z }_2}} \right) = \left( {2 - {z_1}{{\overline z }_2}} \right).\left( {2 - {{\overline z }_1}{z_2}} \right) \\
\Rightarrow {z_1}{\overline z _1} - 2.{z_2}.{\overline z _1} - 2.{z_1}.{\overline z _2} + 4.{z_2}.{\overline z _2} = 4 - 2.{z_2}.{\overline z _1} - 2.{z_1}.{\overline z _2} + {\overline z _1}.{z_2}{z_1}{\overline z _2} \\
\Rightarrow {({z_1})^2} + 4.{({z_2})^2} = 4 + {\overline z _1}.{z_2}{z_1}{\overline z _2} \\
\Rightarrow |{z_1}{|^2} + 4|{z_2}{|^2} = 4 + |{z_1}{|^2}|{z_2}{|^2} \\
\Rightarrow |{z_1}{|^2} + 4|{z_2}{|^2} - 4 - |{z_1}{|^2}|{z_2}{|^2} = 0 \\
\Rightarrow |{z_1}{|^2} - |{z_1}{|^2}|{z_2}{|^2} + 4|{z_2}{|^2} - \,4 = 0 \\
\Rightarrow |{z_1}{|^2}\left( {1 - |{z_2}{|^2}} \right) - 4\left( {1 - |{z_2}{|^2}} \right) = 0 \\
\Rightarrow \left( {1 - |{z_2}{|^2}} \right)\left( {|{z_1}{|^2} - 4} \right) = 0 \\
\Rightarrow \left( {1 - |{z_2}{|^2}} \right) = 0\,\,\,\,or\,\,\left( {|{z_1}{|^2} - 4} \right) = 0 \\
\Rightarrow |{z_2}{|^2} = 1\,\,or\,\,|{z_1}{|^2} = 4 \\
\Rightarrow |{z_2}| = 1\,\,\,or\,\,|{z_1}| = 2 \\
\]
But since it is given that $ {z_2} \ne 1 $
Therefore, we have $ |{z_1}| = 2 $
Or we can write it as $ \sqrt {({x^2} + {y^2})} = 2\,\,\,\,\,\,\,\,\,\,\,\,\left( {\because |z| = \sqrt {{x^2} + {y^2}} } \right) $
Squaring both side we have
$ {x^2} + {y^2} = 4 $
Which is an equation of circle having centre at origin and of radius $ 2\,units $ .
Hence, from above we see the out of the given four options, option (C) is the correct option.
So, the correct answer is “Option C”.
Note: We know that for complex numbers we always take z = x + iy and to find solutions to any complex problems we start with the given condition and then simplify the given problem by using different properties of complex numbers.
$ For\,\,any\,\,z = x + iy,\,\,\,\,|z{|^2} = z.\overline z ,\,\,\,\,\,\,and\,\,|x + iy| = \sqrt {{x^2} + {y^2}} $
Complete step-by-step answer:
Since it is given that $ \dfrac{{{z_1} - 2{z_2}}}{{2 - {z_1}{{\overline z }_2}}} $ is unimodular.
Therefore $
{\dfrac{{{z_1} - 2{z_2}}}{{2 - {z_1}{{\overline z }_2}}}}
= 1 $
$ \Rightarrow |{z_1} - 2{z_2}| = |2 - {z_1}{\overline z _2}| $
To remove mode from the above equation. We do squaring both side
\[
{\left( {{z_1} - 2{z_2}} \right)^2} = {\left( {2 - {z_1}{{\overline z }_2}} \right)^2} \\
\Rightarrow \left( {{z_1} - 2{z_2}} \right).\left( {{{\overline z }_1} - 2{{\overline z }_2}} \right) = \left( {2 - {z_1}{{\overline z }_2}} \right).\left( {2 - {{\overline z }_1}{z_2}} \right) \\
\Rightarrow {z_1}{\overline z _1} - 2.{z_2}.{\overline z _1} - 2.{z_1}.{\overline z _2} + 4.{z_2}.{\overline z _2} = 4 - 2.{z_2}.{\overline z _1} - 2.{z_1}.{\overline z _2} + {\overline z _1}.{z_2}{z_1}{\overline z _2} \\
\Rightarrow {({z_1})^2} + 4.{({z_2})^2} = 4 + {\overline z _1}.{z_2}{z_1}{\overline z _2} \\
\Rightarrow |{z_1}{|^2} + 4|{z_2}{|^2} = 4 + |{z_1}{|^2}|{z_2}{|^2} \\
\Rightarrow |{z_1}{|^2} + 4|{z_2}{|^2} - 4 - |{z_1}{|^2}|{z_2}{|^2} = 0 \\
\Rightarrow |{z_1}{|^2} - |{z_1}{|^2}|{z_2}{|^2} + 4|{z_2}{|^2} - \,4 = 0 \\
\Rightarrow |{z_1}{|^2}\left( {1 - |{z_2}{|^2}} \right) - 4\left( {1 - |{z_2}{|^2}} \right) = 0 \\
\Rightarrow \left( {1 - |{z_2}{|^2}} \right)\left( {|{z_1}{|^2} - 4} \right) = 0 \\
\Rightarrow \left( {1 - |{z_2}{|^2}} \right) = 0\,\,\,\,or\,\,\left( {|{z_1}{|^2} - 4} \right) = 0 \\
\Rightarrow |{z_2}{|^2} = 1\,\,or\,\,|{z_1}{|^2} = 4 \\
\Rightarrow |{z_2}| = 1\,\,\,or\,\,|{z_1}| = 2 \\
\]
But since it is given that $ {z_2} \ne 1 $
Therefore, we have $ |{z_1}| = 2 $
Or we can write it as $ \sqrt {({x^2} + {y^2})} = 2\,\,\,\,\,\,\,\,\,\,\,\,\left( {\because |z| = \sqrt {{x^2} + {y^2}} } \right) $
Squaring both side we have
$ {x^2} + {y^2} = 4 $
Which is an equation of circle having centre at origin and of radius $ 2\,units $ .
Hence, from above we see the out of the given four options, option (C) is the correct option.
So, the correct answer is “Option C”.
Note: We know that for complex numbers we always take z = x + iy and to find solutions to any complex problems we start with the given condition and then simplify the given problem by using different properties of complex numbers.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

