
A circular disc of area ${{A}_{1}}$ is given; with its radius as the diameter of a circular disc of area ${{A}_{2}}$ is cut out. If the area of the remaining disc is denoted by ${{A}_{3}}$, then
(a) ${{A}_{1}}{{A}_{3}}<16A_{2}^{2}$
(b) ${{A}_{1}}{{A}_{3}}>16A_{2}^{2}$
(c) ${{A}_{1}}{{A}_{3}}=16A_{2}^{2}$
(d) ${{A}_{1}}{{A}_{3}}>2A_{2}^{2}$
Answer
603k+ views
Hint: Here, we will assume that the radius of the disc with area ${{A}_{1}}$ is R and then we will try to find the value of ${{A}_{2}}$ and ${{A}_{3}}$ in terms of R. After that we can try to check which of the relations provided in the option is the correct.
Complete Step-by-Step solution:
Let us consider that the radius of the circular disc whose area is ${{A}_{1}}$ is = R.
We know that the area of a disc is given by the formula $A=\pi \times {{\left( radius \right)}^{2}}$.
So, for the area of first disc we have:
${{A}_{1}}=\pi {{R}^{2}}............\left( 1 \right)$
Now, another disc whose area is ${{A}_{2}}$ is cut out from the disc of area ${{A}_{1}}$ as the radius of the second being the diameter of the first.
There, radius of the disc with area ${{A}_{2}}$ will be = $\dfrac{R}{2}$
So, for this disc area will be given as:
${{A}_{2}}=\pi \times {{\left( \dfrac{R}{2} \right)}^{2}}=\dfrac{\pi {{R}^{2}}}{4}............\left( 2 \right)$
Since, the area of the remaining disc is given as ${{A}_{3}}$ . So, we can write:
${{A}_{3}}={{A}_{1}}-{{A}_{2}}.............\left( 3 \right)$
On substituting the values of ${{A}_{1}}$ and ${{A}_{2}}$ from equation (1) and (2) in equation (3), we get:
$\begin{align}
& {{A}_{3}}=\pi {{R}^{2}}-\dfrac{\pi {{R}^{2}}}{4} \\
& \Rightarrow {{A}_{3}}=\dfrac{4\pi {{R}^{2}}-\pi {{R}^{2}}}{4}=\dfrac{3\pi {{R}^{2}}}{4} \\
\end{align}$
Now, to check the relations given in the options, we have to first find the values of ${{A}_{1}}{{A}_{3}}$.
We know that ${{A}_{1}}=\pi {{R}^{2}}$ and ${{A}_{3}}=\dfrac{3\pi {{R}^{2}}}{4}$.
Therefore, ${{A}_{1}}{{A}_{3}}=\pi {{R}^{2}}\times \dfrac{3\pi {{R}^{2}}}{4}=\dfrac{3{{\pi }^{2}}{{R}^{4}}}{4}$.
Also, we have to find the value of $16A_{2}^{2}$.
Since, ${{A}_{2}}=\dfrac{\pi {{R}^{2}}}{4}$.
Therefore, $16A_{2}^{2}=16\times \dfrac{{{\pi }^{2}}{{R}^{4}}}{16}={{\pi }^{2}}{{R}^{4}}$
Now, it is clear that $\dfrac{3{{\pi }^{2}}{{R}^{4}}}{4}<{{\pi }^{2}}{{R}^{4}}$.
So, ${{A}_{1}}{{A}_{3}}<16A_{2}^{2}$.
Now, to check for the last option, we have to calculate the value of $2A_{2}^{2}$ .
So, $2A_{2}^{2}=2\times {{\left( \dfrac{\pi {{R}^{2}}}{4} \right)}^{2}}=\dfrac{{{\pi }^{2}}{{R}^{4}}}{8}$
Since, $\dfrac{3{{\pi }^{2}}{{R}^{4}}}{4}>\dfrac{{{\pi }^{2}}{{R}^{4}}}{8}$
So, we have ${{A}_{1}}{{A}_{3}}>2A_{2}^{2}$.
Hence, option (a) and option (d) are the correct answers.
Note: Students should note here that we use the formula for the area of a circle to find the area of the disc. Students should be careful while comparing the area as they are in fractions to avoid unnecessary mistakes.
Complete Step-by-Step solution:
Let us consider that the radius of the circular disc whose area is ${{A}_{1}}$ is = R.
We know that the area of a disc is given by the formula $A=\pi \times {{\left( radius \right)}^{2}}$.
So, for the area of first disc we have:
${{A}_{1}}=\pi {{R}^{2}}............\left( 1 \right)$
Now, another disc whose area is ${{A}_{2}}$ is cut out from the disc of area ${{A}_{1}}$ as the radius of the second being the diameter of the first.
There, radius of the disc with area ${{A}_{2}}$ will be = $\dfrac{R}{2}$
So, for this disc area will be given as:
${{A}_{2}}=\pi \times {{\left( \dfrac{R}{2} \right)}^{2}}=\dfrac{\pi {{R}^{2}}}{4}............\left( 2 \right)$
Since, the area of the remaining disc is given as ${{A}_{3}}$ . So, we can write:
${{A}_{3}}={{A}_{1}}-{{A}_{2}}.............\left( 3 \right)$
On substituting the values of ${{A}_{1}}$ and ${{A}_{2}}$ from equation (1) and (2) in equation (3), we get:
$\begin{align}
& {{A}_{3}}=\pi {{R}^{2}}-\dfrac{\pi {{R}^{2}}}{4} \\
& \Rightarrow {{A}_{3}}=\dfrac{4\pi {{R}^{2}}-\pi {{R}^{2}}}{4}=\dfrac{3\pi {{R}^{2}}}{4} \\
\end{align}$
Now, to check the relations given in the options, we have to first find the values of ${{A}_{1}}{{A}_{3}}$.
We know that ${{A}_{1}}=\pi {{R}^{2}}$ and ${{A}_{3}}=\dfrac{3\pi {{R}^{2}}}{4}$.
Therefore, ${{A}_{1}}{{A}_{3}}=\pi {{R}^{2}}\times \dfrac{3\pi {{R}^{2}}}{4}=\dfrac{3{{\pi }^{2}}{{R}^{4}}}{4}$.
Also, we have to find the value of $16A_{2}^{2}$.
Since, ${{A}_{2}}=\dfrac{\pi {{R}^{2}}}{4}$.
Therefore, $16A_{2}^{2}=16\times \dfrac{{{\pi }^{2}}{{R}^{4}}}{16}={{\pi }^{2}}{{R}^{4}}$
Now, it is clear that $\dfrac{3{{\pi }^{2}}{{R}^{4}}}{4}<{{\pi }^{2}}{{R}^{4}}$.
So, ${{A}_{1}}{{A}_{3}}<16A_{2}^{2}$.
Now, to check for the last option, we have to calculate the value of $2A_{2}^{2}$ .
So, $2A_{2}^{2}=2\times {{\left( \dfrac{\pi {{R}^{2}}}{4} \right)}^{2}}=\dfrac{{{\pi }^{2}}{{R}^{4}}}{8}$
Since, $\dfrac{3{{\pi }^{2}}{{R}^{4}}}{4}>\dfrac{{{\pi }^{2}}{{R}^{4}}}{8}$
So, we have ${{A}_{1}}{{A}_{3}}>2A_{2}^{2}$.
Hence, option (a) and option (d) are the correct answers.
Note: Students should note here that we use the formula for the area of a circle to find the area of the disc. Students should be careful while comparing the area as they are in fractions to avoid unnecessary mistakes.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
river flows through Silent Valley National Park in class 10 social science CBSE

What are the public facilities provided by the government? Also explain each facility

Distinguish between polar molecules and nonpolar m class 10 chemistry CBSE

Show that the points 11 52 and 9 5 are collinear-class-10-maths-CBSE

What is the full form of POSCO class 10 social science CBSE

What is the relation between orthocenter circumcentre class 10 maths CBSE

