
A circle passes through the point (3, 4) and cuts the circle ${x^2} + {y^2} = {a^2}$ orthogonally, the locus of its centre is a straight line. If the distance of this straight line from the origin is 25, then ${a^2}$ =
A.250
B.225
C.100
D.25
Answer
615k+ views
Hint – Limiting points of the system of co- axial circles are the centres of the point circles belonging to the family. And as we know, every circle passing through limiting points of a coaxial system is orthogonal to all the circles of the system.
Complete step-by-step answer:
So, let there be a circle with radius 0 and passes through (3, 4). Equation of this circle is ${S_1}:{(x - 3)^2} + {(y - 4)^2} = 0$.
We have been given in the question the equation of the circle ${x^2} + {y^2} = {a^2}$.
Let the given circle be ${S_2}:{x^2} + {y^2} - {a^2} = 0$.
Therefore, equation of the radical axis: ${S_1} - {S_2} = 0$
$ \Rightarrow - 6x - 8y + 25 + {a^2} = 0$
The above equation is the equation of the radical axis of a co- axial system of circles of which (3, 4) is a limiting point. Hence, this will be the required locus.
Distance of (0, 0) from the radical axis is 25.
So,
$
\dfrac{{|25 + {a^2}|}}{{\sqrt {36 + 64} }} = 25 \\
\Rightarrow 25 + {a^2} = 250 \\
\therefore {a^2} = 225 \\
$
Hence, the correct option is B. 225.
Note – Whenever such types of questions appear then write the equation of given circle and the equation of the circle that cuts the given circle orthogonally is ${S_1}:{(x - 3)^2} + {(y - 4)^2} = 0$, as this circle has radius 0 and passes through (3, 4), as it is a point circle. Using these two equations of circle find the equation of radical axis, which is the required locus and then equate the distance of (0, 0) from the radical axis with 25 to find the value of ${a^2}$.
Complete step-by-step answer:
So, let there be a circle with radius 0 and passes through (3, 4). Equation of this circle is ${S_1}:{(x - 3)^2} + {(y - 4)^2} = 0$.
We have been given in the question the equation of the circle ${x^2} + {y^2} = {a^2}$.
Let the given circle be ${S_2}:{x^2} + {y^2} - {a^2} = 0$.
Therefore, equation of the radical axis: ${S_1} - {S_2} = 0$
$ \Rightarrow - 6x - 8y + 25 + {a^2} = 0$
The above equation is the equation of the radical axis of a co- axial system of circles of which (3, 4) is a limiting point. Hence, this will be the required locus.
Distance of (0, 0) from the radical axis is 25.
So,
$
\dfrac{{|25 + {a^2}|}}{{\sqrt {36 + 64} }} = 25 \\
\Rightarrow 25 + {a^2} = 250 \\
\therefore {a^2} = 225 \\
$
Hence, the correct option is B. 225.
Note – Whenever such types of questions appear then write the equation of given circle and the equation of the circle that cuts the given circle orthogonally is ${S_1}:{(x - 3)^2} + {(y - 4)^2} = 0$, as this circle has radius 0 and passes through (3, 4), as it is a point circle. Using these two equations of circle find the equation of radical axis, which is the required locus and then equate the distance of (0, 0) from the radical axis with 25 to find the value of ${a^2}$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

