Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

A bulb is joined to a battery of emf $6\,V$. A steady current of $0.5\,A$ flows through the circuit. Calculate the cost of electricity at Rs. \[9.50/-\] per \[kWh\] for 5 minutes.

Answer
VerifiedVerified
503.4k+ views
Hint: Learn the Joule’s law of heating for resistive circuits and find the energy loss by the bulb to find the cost of electricity. The Joule’s heating for a resistive circuit is proportional to the square of current flowing, the resistance of the circuit and the time.

Formula used:
The Joule’s law of heating in an electric circuit is given by,
\[H = {I^2}Rt\]
where, \[I\] is the current through the circuit, \[R\] is the resistance of the circuit and \[t\] is the time passed.

Complete step by step answer:
We have given here a bulb which is joined to a battery of emf 6V and the current through the circuit is 0.5A. It glows for 5 minutes constantly. Now, we have to find the electricity cost at a rate of Rs. 9.50. We know that the loss of electric energy in a circuit is nothing but the Joule’s heating from the circuit.

Now, Joule’s law of heating in an electric circuit is given by,
\[H = {I^2}Rt\]
Hence, first we have to find the resistance of the bulb.
We have given, \[I = 0.5A\]\[V = 6V\].
So, from Ohm’s law resistance \[R\]is equal to,
\[R = \dfrac{V}{I} = \dfrac{6}{{0.5}} = 12\Omega \]
So, putting the values of \[I = 0.5A\], \[R = 12\Omega \] and \[t = 5 \times 60 = 300\,s\]

We have from joule’s law,
\[H = {(0.5)^2} \times 12 \times 300\]
\[\Rightarrow H = 900\]
Hence, the energy loss due to the bulb is,
\[900\,J = 900\,Ws = \dfrac{{900}}{{3600 \times 1000}}\,kWh\]
\[\Rightarrow 900\,J= 0.0025kWh\]
Hence, the cost of electricity will be,
\[Rs.\,0.0025 \times 9.50 = Rs.0.023 = 2.375\,paise\]

Hence, the cost of electricity is \[2.375\,paise\].

Note: When converting the energy from\[J\] to in terms of \[kWh\]make sure to multiply the correct constants with the denominator else the result will be flawed. The expression of the Joule’s heating is the same as the power generation of a circuit,\[P = VI\].We can rewrite this using the Ohm’s law \[V = IR\]as \[P = {I^2}R\]. The only difference is that in the expression of power the expression of time is not there.