
A boiler is in the form of a cylinder 2m long with hemispherical ends each of 2 metre diameter. Find the volume of the boiler.
Answer
595.5k+ views
Hint: In this question we have to find Volume of the boiler. First step is to draw a diagram. It will give us a clear picture of what to find out, considering the given quantity, break the diagram into 3 parts, two hemispheres and one cylinder. Now using the formula of volume of a cylinder and hemisphere you will get the final answer.
Complete step-by-step answer:
According to the question, a boiler is in the form of a cylinder 2 m long with hemispherical ends each of 2 metre diameter.
The height of the cylinder is h and the radius of the cylinder is r.
Height of the cylinder = h = 2 m
Diameter of the hemisphere = 2 m
As we know that Radius = $\dfrac{{{\rm{Diameter}}}}{2}$
∴ Radius of the hemisphere = ${\rm{r}} = \dfrac{{{\rm{Diameter}}}}{2} = \dfrac{2}{2} = 1{\rm{m}}$
Since at ends of cylinder hemisphere are attached,
So, Radius of the Cylinder = Radius of the hemisphere = r = 1m
From above diagram,
Total volume of the boiler = Volume of the cylindrical portion + Volume of the two hemispheres
We know that,
Volume of the cylinder = ${\rm{\pi }}{{\rm{r}}^2}{\rm{h}}$
Volume of the hemisphere = $\dfrac{{2{\rm{\;\pi }}{{\rm{r}}^3}}}{3}$
Now,
Total volume of the boiler = ${\rm{V\;}} = {\rm{\;\pi }}{{\rm{r}}^2}{\rm{h\;}} + {\rm{\;}}2 \times \left( {\dfrac{{2{\rm{\;\pi }}{{\rm{r}}^3}}}{3}} \right)$
$ \Rightarrow {\rm{V\;}} = {\rm{\;\pi }}{{\rm{r}}^2}{\rm{h\;}} + \dfrac{4}{3}{\rm{\pi }}{{\rm{r}}^3}$
$ \Rightarrow {\rm{V\;}} = {\rm{\;\pi }}{{\rm{r}}^2}\left( {{\rm{h\;}} + \dfrac{{4{\rm{r}}}}{3}} \right)$
$ \Rightarrow {\rm{V\;}} = \dfrac{{22}}{7} \times {\rm{\;}}{1^2} \times \left( {{\rm{\;}}2{\rm{\;}} + \dfrac{4}{3} \times 1} \right)$
$ \Rightarrow {\rm{V\;}} = \dfrac{{22}}{7} \times \left( {\dfrac{{6 + 4}}{3}} \right)$
$ \Rightarrow {\rm{V\;}} = \dfrac{{22}}{7} \times \dfrac{{10}}{3}{\rm{\;}} = \dfrac{{220}}{{21}}$
Therefore, Volume of the boiler is $\dfrac{{220}}{{21}}$ m³
Note: Whenever we face such types of problems the key concept is to draw the pictorial representation of the given problem and then split into parts such that we can use the formula of standard quantities in order to get the volume of the boiler.
Complete step-by-step answer:
According to the question, a boiler is in the form of a cylinder 2 m long with hemispherical ends each of 2 metre diameter.
The height of the cylinder is h and the radius of the cylinder is r.
Height of the cylinder = h = 2 m
Diameter of the hemisphere = 2 m
As we know that Radius = $\dfrac{{{\rm{Diameter}}}}{2}$
∴ Radius of the hemisphere = ${\rm{r}} = \dfrac{{{\rm{Diameter}}}}{2} = \dfrac{2}{2} = 1{\rm{m}}$
Since at ends of cylinder hemisphere are attached,
So, Radius of the Cylinder = Radius of the hemisphere = r = 1m
From above diagram,
Total volume of the boiler = Volume of the cylindrical portion + Volume of the two hemispheres
We know that,
Volume of the cylinder = ${\rm{\pi }}{{\rm{r}}^2}{\rm{h}}$
Volume of the hemisphere = $\dfrac{{2{\rm{\;\pi }}{{\rm{r}}^3}}}{3}$
Now,
Total volume of the boiler = ${\rm{V\;}} = {\rm{\;\pi }}{{\rm{r}}^2}{\rm{h\;}} + {\rm{\;}}2 \times \left( {\dfrac{{2{\rm{\;\pi }}{{\rm{r}}^3}}}{3}} \right)$
$ \Rightarrow {\rm{V\;}} = {\rm{\;\pi }}{{\rm{r}}^2}{\rm{h\;}} + \dfrac{4}{3}{\rm{\pi }}{{\rm{r}}^3}$
$ \Rightarrow {\rm{V\;}} = {\rm{\;\pi }}{{\rm{r}}^2}\left( {{\rm{h\;}} + \dfrac{{4{\rm{r}}}}{3}} \right)$
$ \Rightarrow {\rm{V\;}} = \dfrac{{22}}{7} \times {\rm{\;}}{1^2} \times \left( {{\rm{\;}}2{\rm{\;}} + \dfrac{4}{3} \times 1} \right)$
$ \Rightarrow {\rm{V\;}} = \dfrac{{22}}{7} \times \left( {\dfrac{{6 + 4}}{3}} \right)$
$ \Rightarrow {\rm{V\;}} = \dfrac{{22}}{7} \times \dfrac{{10}}{3}{\rm{\;}} = \dfrac{{220}}{{21}}$
Therefore, Volume of the boiler is $\dfrac{{220}}{{21}}$ m³
Note: Whenever we face such types of problems the key concept is to draw the pictorial representation of the given problem and then split into parts such that we can use the formula of standard quantities in order to get the volume of the boiler.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

