
A body travels uniformly a distance of (13.8 + 0.2) meter in a time (4.0 + 0.3) second. Find the velocity of the body within error limits and the percentage error?
Answer
563.1k+ views
Hint: The result of every measurement by any measuring method contains some uncertainty, which is called an error. In order to calculate the percentage error first calculate the error limits in velocity by the formula $\dfrac{{\Delta v}}{v} = \dfrac{{\Delta d}}{d} + \dfrac{{\Delta t}}{t}$ then multiply the calculated value by hundred.
Formula used:
$velocity = \dfrac{\text{Distance}}{\text{Time}} \Rightarrow v = \dfrac{d}{t}$, $\dfrac{{\Delta v}}{v} = \dfrac{{\Delta d}}{d} + \dfrac{{\Delta t}}{t}$
Complete step-by-step solution:
Error limits in velocity is $\dfrac{{\Delta v}}{v} = \dfrac{{\Delta d}}{d} + \dfrac{{\Delta t}}{t}$ where $\Delta d$ is the distance error and d is the total distance and $\Delta t$ is the time error and t is the total time.
Given that,
Distance = (13.8 + 0.2) meter
Time = (4.0 + 0.3) second
Distance error $\Delta d$ = 0.2 meter
Time error $\Delta t$ = 0.3 second
Therefore velocity=$\dfrac{\text{Distance}}{\text{Time}}=\dfrac{{13.8}}{4} =3.45\dfrac{m}{s}$
Error limits in velocity = $\dfrac{{\Delta v}}{v} = \dfrac{{\Delta d}}{d} + \dfrac{{\Delta t}}{t}$
= $\dfrac{{0.2}}{{13.8}} + \dfrac{{0.3}}{{4.0}}$
= $0.089$
$\Rightarrow \dfrac{{\Delta v}}{v} = $ 0.089
Therefore change is velocity = $\Delta v = 0.089 \times 3.45 = 0.30$
Hence Velocity within error limits = $(3.45 \pm 0.3)\dfrac{m}{s}$
Percentage error = $\dfrac{{\Delta v}}{v} \times 100 = 0.089 \times 100 = 8.9\% $
Note: In this question first we calculated the velocity by dividing the distance by the time it takes to travel that same distance after that we calculated the error limits in velocity, hence the velocity within error limits is calculated to be as $(3.45 \pm 0.3)\dfrac{m}{s}$ with a percentage error of $8.9\%.$
Formula used:
$velocity = \dfrac{\text{Distance}}{\text{Time}} \Rightarrow v = \dfrac{d}{t}$, $\dfrac{{\Delta v}}{v} = \dfrac{{\Delta d}}{d} + \dfrac{{\Delta t}}{t}$
Complete step-by-step solution:
Error limits in velocity is $\dfrac{{\Delta v}}{v} = \dfrac{{\Delta d}}{d} + \dfrac{{\Delta t}}{t}$ where $\Delta d$ is the distance error and d is the total distance and $\Delta t$ is the time error and t is the total time.
Given that,
Distance = (13.8 + 0.2) meter
Time = (4.0 + 0.3) second
Distance error $\Delta d$ = 0.2 meter
Time error $\Delta t$ = 0.3 second
Therefore velocity=$\dfrac{\text{Distance}}{\text{Time}}=\dfrac{{13.8}}{4} =3.45\dfrac{m}{s}$
Error limits in velocity = $\dfrac{{\Delta v}}{v} = \dfrac{{\Delta d}}{d} + \dfrac{{\Delta t}}{t}$
= $\dfrac{{0.2}}{{13.8}} + \dfrac{{0.3}}{{4.0}}$
= $0.089$
$\Rightarrow \dfrac{{\Delta v}}{v} = $ 0.089
Therefore change is velocity = $\Delta v = 0.089 \times 3.45 = 0.30$
Hence Velocity within error limits = $(3.45 \pm 0.3)\dfrac{m}{s}$
Percentage error = $\dfrac{{\Delta v}}{v} \times 100 = 0.089 \times 100 = 8.9\% $
Note: In this question first we calculated the velocity by dividing the distance by the time it takes to travel that same distance after that we calculated the error limits in velocity, hence the velocity within error limits is calculated to be as $(3.45 \pm 0.3)\dfrac{m}{s}$ with a percentage error of $8.9\%.$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

State the laws of reflection of light

Name the metals and nonmetals in the first twenty class 11 chemistry CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

