A block of mass of $ 10kg $ rests on a horizontal table. The coefficient of friction between the black and the table is $ 0\cdot 05 $ . When hit by a bullet of mass $ 50g $ moving with speed u, that gets embedded in it, the block moves and comes to rest after moving a distance of $ 2m $ on the table. If a freely falling object were to acquire speed $ \dfrac{v}{10} $ after being dropped from height h, then neglecting energy losses and taking $ g=\text{ }10\text{ m/}{{\text{s}}^{2}} $ , the value of $ H $ is close to:
A) $ 0\cdot 04\text{ km} $
B) $ 0\cdot 05\text{ }km $
C) $ 0\cdot 02\text{ }km $
D) $ 0\cdot 03\text{ }km $
Answer
Verified
450.3k+ views
Hint: As the bullet is embedded in the block, the kinetic energy of the combined block and bullet system can be calculated by using the formula
$ k\cdot E\text{ = }\dfrac{1}{2}\text{ m}{{\text{v}}^{2}} $
The value of $ v $ here is calculated by applying the principle of conservation of linear momentum.
Next, as the system stops at a distance, so the kinetic energy loss due to friction be made equal to the work done by using the initial condition given in the question.From here, the value of $ h $ can be calculated.
Complete step-by-step solution
From conservation of linear momentum, we know that:
$ {{m}_{1}}\text{ v = }\left( {{m}_{2}}+{{m}_{1}} \right)\text{ v} $
here $ \begin{align}
& m1=\text{ mass of bullet} \\
& m2\text{= mass of black} \\
\end{align} $
kinetic energy of combined black and bullet system is given by:
$ E\text{ = }\dfrac{1}{2}\text{ }\left( {{m}_{1}}+{{m}_{2}} \right)\text{ }{{\left( v \right)}^{2}} $
New, from equation 1 , we get
$ \text{v = }\dfrac{{{m}_{1}}v}{\left( {{m}_{1}}+{{m}_{2}} \right)} $
Putting this value in equation 2, we get:
$ \text{E = }\dfrac{1}{2}\text{ }\left( {{m}_{1}}+{{m}_{2}} \right)\text{ }\dfrac{{{m}_{1}}^{2}{{v}^{2}}}{{{\left( {{m}_{1}}+{{m}_{2}} \right)}^{2}}\text{ }} $
$ E\text{ = }\dfrac{{{\left( {{m}_{1}}v \right)}^{2}}}{2\left( {{m}_{1}}+{{m}_{2}} \right)} $
As the system stops at a distance on the table, so
$ K\cdot E $ loss due to friction = work done
So, $ H\left( {{m}_{1}}+{{m}_{2}} \right)\text{ }{{g}^{\And }}\text{ }\dfrac{{{\left( {{m}_{1}}v \right)}^{2}}}{2\left( {{m}_{1}}+{{m}_{2}} \right)} $
As the freely falling object acquires speed $ \left( \dfrac{v}{10} \right) $ when it falls a distance h
Therefore, $ {{v}^{2}}-{{u}^{2}}=2gh $
$ u=0,\text{ v = }\dfrac{v}{10} $
So, $ {{\left( \dfrac{v}{10} \right)}^{2}}=2gh $
$ {{v}^{2}}=200gh $
Putting this value in equation 4, we get
$ H\left( {{m}_{1}}+{{m}_{2}} \right)gs=\dfrac{{{\left( {{m}_{1}} \right)}^{2}}\left( 200gh \right)}{2\left( {{m}_{1}}+{{m}_{2}} \right)} $
$ H=\dfrac{2m{{g}^{\And }}{{\left( {{m}_{1}}+{{m}_{2}} \right)}^{2}}}{200g\text{ m}{{\text{1}}^{2}}} $
= $ \dfrac{2\times 0\cdot 05\times {{\left( 10\cdot 5 \right)}^{2}}}{100\times {{\left( 0\cdot 5 \right)}^{2}}} $
= $ 40\cdot 4m $
$ H=0\cdot 04km $ .
Note
Consider that a body is lying on a Horizontal surface. If R is the normal reaction and F is the limiting static friction, then
$ F\propto r $
$ F=\mu r $
On a horizontal surface, $ \mu k $ is the coefficient of kinetic friction between the two surfaces in contact. The force of friction between the block and horizontal surface is given by:
$ F=\mu r $ R
= $ \mu r\text{ }mg $
To move the block without acceleration, the force required will be just equal to the force of friction
$ P=F=\mu rmg $
If $ s $ is the distance moved, then work done is given by
$ W=P\times S $
$ w=\mu k\text{ mg }s $ .
$ k\cdot E\text{ = }\dfrac{1}{2}\text{ m}{{\text{v}}^{2}} $
The value of $ v $ here is calculated by applying the principle of conservation of linear momentum.
Next, as the system stops at a distance, so the kinetic energy loss due to friction be made equal to the work done by using the initial condition given in the question.From here, the value of $ h $ can be calculated.
Complete step-by-step solution
From conservation of linear momentum, we know that:
$ {{m}_{1}}\text{ v = }\left( {{m}_{2}}+{{m}_{1}} \right)\text{ v} $
here $ \begin{align}
& m1=\text{ mass of bullet} \\
& m2\text{= mass of black} \\
\end{align} $
kinetic energy of combined black and bullet system is given by:
$ E\text{ = }\dfrac{1}{2}\text{ }\left( {{m}_{1}}+{{m}_{2}} \right)\text{ }{{\left( v \right)}^{2}} $
New, from equation 1 , we get
$ \text{v = }\dfrac{{{m}_{1}}v}{\left( {{m}_{1}}+{{m}_{2}} \right)} $
Putting this value in equation 2, we get:
$ \text{E = }\dfrac{1}{2}\text{ }\left( {{m}_{1}}+{{m}_{2}} \right)\text{ }\dfrac{{{m}_{1}}^{2}{{v}^{2}}}{{{\left( {{m}_{1}}+{{m}_{2}} \right)}^{2}}\text{ }} $
$ E\text{ = }\dfrac{{{\left( {{m}_{1}}v \right)}^{2}}}{2\left( {{m}_{1}}+{{m}_{2}} \right)} $
As the system stops at a distance on the table, so
$ K\cdot E $ loss due to friction = work done
So, $ H\left( {{m}_{1}}+{{m}_{2}} \right)\text{ }{{g}^{\And }}\text{ }\dfrac{{{\left( {{m}_{1}}v \right)}^{2}}}{2\left( {{m}_{1}}+{{m}_{2}} \right)} $
As the freely falling object acquires speed $ \left( \dfrac{v}{10} \right) $ when it falls a distance h
Therefore, $ {{v}^{2}}-{{u}^{2}}=2gh $
$ u=0,\text{ v = }\dfrac{v}{10} $
So, $ {{\left( \dfrac{v}{10} \right)}^{2}}=2gh $
$ {{v}^{2}}=200gh $
Putting this value in equation 4, we get
$ H\left( {{m}_{1}}+{{m}_{2}} \right)gs=\dfrac{{{\left( {{m}_{1}} \right)}^{2}}\left( 200gh \right)}{2\left( {{m}_{1}}+{{m}_{2}} \right)} $
$ H=\dfrac{2m{{g}^{\And }}{{\left( {{m}_{1}}+{{m}_{2}} \right)}^{2}}}{200g\text{ m}{{\text{1}}^{2}}} $
= $ \dfrac{2\times 0\cdot 05\times {{\left( 10\cdot 5 \right)}^{2}}}{100\times {{\left( 0\cdot 5 \right)}^{2}}} $
= $ 40\cdot 4m $
$ H=0\cdot 04km $ .
Note
Consider that a body is lying on a Horizontal surface. If R is the normal reaction and F is the limiting static friction, then
$ F\propto r $
$ F=\mu r $
On a horizontal surface, $ \mu k $ is the coefficient of kinetic friction between the two surfaces in contact. The force of friction between the block and horizontal surface is given by:
$ F=\mu r $ R
= $ \mu r\text{ }mg $
To move the block without acceleration, the force required will be just equal to the force of friction
$ P=F=\mu rmg $
If $ s $ is the distance moved, then work done is given by
$ W=P\times S $
$ w=\mu k\text{ mg }s $ .
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE