
A and B together can do a piece of work in $ 8 $ days. B alone completes that work in $ 12 $ days. B worked alone for $ 4 $ days. In how many more days after that could A alone complete it.
A. $ 15 $ days
B. $ 18 $ days
C. $ 16 $ days
D. $ 20 $ days
Answer
507.3k+ views
Hint: Here we will find the work done by A individual by finding the correlation between the work done by B only and A and B. Find the total work done and accordingly find the work done by A and days to complete it.
Complete step-by-step answer:
Given that: A and B complete work $ = 8 $ days
B alone completes work $ = 12 $ days
Take the LCM (least common multiple) for the numbers $ 8 $ and $ 12 = 24 $
Now, the LCM suggests us that the total work is $ 24 $ units
So, A and B completes work in $ 8 $ days –
Therefore, work done by A and B together $ = \dfrac{{24}}{8} = 3 $ units of work per day …. (A)
Also, given that B alone completes work in $ 12 $ days and
Therefore, work done by B $ = \dfrac{{24}}{{12}} = 2 $ units of work per day …. (B)
From the equations (A) and (B)
The work done by A alone $ = 3 - 2 = 1 $ unit of work per day
Now,
B works for $ 4 $ days, therefore work done by B in $ 4 $ days $ = 4 \times 2 = 8 $ units of work
Now, total units of work is $ 24 $
So, remaining work to be done by A $ = 24 - 8 = 16 $ units of work
A performs $ 1 $ unit of work per day and therefore for $ 16 $ units of work it will take $ 16 $ days.
From the given multiple choices, the option C is the correct answer.
So, the correct answer is “Option C”.
Note: Read the question twice and follow the step by step approach. Find the correct correlation from all the known terms to get the value of unknown terms. Be good in ratio and proportion concepts to solve these types of word problems.
Complete step-by-step answer:
Given that: A and B complete work $ = 8 $ days
B alone completes work $ = 12 $ days
Take the LCM (least common multiple) for the numbers $ 8 $ and $ 12 = 24 $
Now, the LCM suggests us that the total work is $ 24 $ units
So, A and B completes work in $ 8 $ days –
Therefore, work done by A and B together $ = \dfrac{{24}}{8} = 3 $ units of work per day …. (A)
Also, given that B alone completes work in $ 12 $ days and
Therefore, work done by B $ = \dfrac{{24}}{{12}} = 2 $ units of work per day …. (B)
From the equations (A) and (B)
The work done by A alone $ = 3 - 2 = 1 $ unit of work per day
Now,
B works for $ 4 $ days, therefore work done by B in $ 4 $ days $ = 4 \times 2 = 8 $ units of work
Now, total units of work is $ 24 $
So, remaining work to be done by A $ = 24 - 8 = 16 $ units of work
A performs $ 1 $ unit of work per day and therefore for $ 16 $ units of work it will take $ 16 $ days.
From the given multiple choices, the option C is the correct answer.
So, the correct answer is “Option C”.
Note: Read the question twice and follow the step by step approach. Find the correct correlation from all the known terms to get the value of unknown terms. Be good in ratio and proportion concepts to solve these types of word problems.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

What are gulf countries and why they are called Gulf class 8 social science CBSE


