
A 2100W continuous flow geyser has water inlet temperature of $10^{\circ}C$ while the water flows out at a rate of $20gs^{-1}$. The outlet temperature of the water must be:
$\text{A}. \ 20^{\circ}$
$\text{B}. \ 30^{\circ}$
$\text{C}. \ 35^{\circ}$
$\text{D}. \ 40^{\circ}$
Answer
578.4k+ views
Hint: A geyser works in such a way that when water comes inside the body of geyser, it provides some energy to the water, as per its wattage. After some time of heating, when hot water is required by someone, the water is taken out of the geyser.
Formula used:
$Q=ms\Delta T$, where ‘$s=4200 Jkg^{-1}K^{-1}$’ is the specific heat of water.
Complete answer:
Given, $\dfrac{dQ}{dt}=2100\ W \ and \ \dfrac{dm}{dt}=20gs^{-1}=0.02kgs^{-1}$.
In order to relate the given values, we must differentiate the expression $Q=ms\Delta T$ with respect to time.
i.e. $\dfrac{dQ}{dt} = \dfrac{dm}{dt}s\Delta T$
On putting the values, we get
$2100 = 0.02\times 4200 \Delta T$
Or $\Delta T = \dfrac{2100}{0.02\times 4200}= 25$
As $\Delta T = T_f-T_i$
Hence $T_f-10=25$
Or $T_f=35^{\circ}$
Hence the outlet temperature is $35^{\circ}$.
So, the correct answer is “Option C”.
Additional Information:
Generally the specific heat of the fluid involved in the question is given, but in some cases, standard fluids like water is used. Hence we should have an idea of their values, for example, for water, $s=4200Jkg^{-1}K^{-1} or \ 1 \ cal \ g^{-1}K^{-1}$ which generally means that 1kg of water require 4200J of energy to raise the temperature by $1^{\circ}C \ or \ 1K$. Also 1 g of water requires 1cal of heat to raise its temperature by $1^{\circ}C \ or \ 1K$. 1 calorie and 1 Joule relates as 1 calorie = 4.2 Joule.
Note:
In the question, we are required to get the relation between rate of flow of heat and rate of flow of water. This could only be done by differentiating the expression in which both heat and mass terms appear. We can also come across many questions in which specific heat varies with temperature. But for smaller changes in temperature, it is assumed to be constant. Such questions are only dealt using the above method of differentiation.
Formula used:
$Q=ms\Delta T$, where ‘$s=4200 Jkg^{-1}K^{-1}$’ is the specific heat of water.
Complete answer:
Given, $\dfrac{dQ}{dt}=2100\ W \ and \ \dfrac{dm}{dt}=20gs^{-1}=0.02kgs^{-1}$.
In order to relate the given values, we must differentiate the expression $Q=ms\Delta T$ with respect to time.
i.e. $\dfrac{dQ}{dt} = \dfrac{dm}{dt}s\Delta T$
On putting the values, we get
$2100 = 0.02\times 4200 \Delta T$
Or $\Delta T = \dfrac{2100}{0.02\times 4200}= 25$
As $\Delta T = T_f-T_i$
Hence $T_f-10=25$
Or $T_f=35^{\circ}$
Hence the outlet temperature is $35^{\circ}$.
So, the correct answer is “Option C”.
Additional Information:
Generally the specific heat of the fluid involved in the question is given, but in some cases, standard fluids like water is used. Hence we should have an idea of their values, for example, for water, $s=4200Jkg^{-1}K^{-1} or \ 1 \ cal \ g^{-1}K^{-1}$ which generally means that 1kg of water require 4200J of energy to raise the temperature by $1^{\circ}C \ or \ 1K$. Also 1 g of water requires 1cal of heat to raise its temperature by $1^{\circ}C \ or \ 1K$. 1 calorie and 1 Joule relates as 1 calorie = 4.2 Joule.
Note:
In the question, we are required to get the relation between rate of flow of heat and rate of flow of water. This could only be done by differentiating the expression in which both heat and mass terms appear. We can also come across many questions in which specific heat varies with temperature. But for smaller changes in temperature, it is assumed to be constant. Such questions are only dealt using the above method of differentiation.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

