
When 3 is added to the denominator and 2 is subtracted from the numerator a fraction becomes $\dfrac{1}{4}$. And when 6 is added to the numerator and the denominator is multiplied by 3, it becomes $\dfrac{2}{3}$. Find the fraction.
Answer
606k+ views
Hint- Here we will proceed by assuming the numerator and denominator be x and y respectively. Then we will use given conditions to form linear equations in 2 variables using a substitution method so that we will get the required numerator and denominator.
Complete step-by-step solution -
Let the numerator be $x$
And let the denominator be $y$
Now applying first condition i.e. When 3 is added to the denominator and 2 is subtracted from the numerator a fraction becomes $\dfrac{1}{4}$,
We get-
$\dfrac{{x - 2}}{{y + 3}} = \dfrac{1}{4}$
$\Rightarrow 4\left( {x - 2} \right) = \left( {y + 3} \right)$
$\Rightarrow 4x – 8 = y + 3$
$\Rightarrow 4x – 11 = y $………… (1)
And applying second condition i.e. when 6 is added to numerator and the denominator is multiplied by 3, it becomes $\dfrac{2}{3}$ ,
We get-
$\dfrac{{x + 6}}{{3y}} = \dfrac{2}{3}$
Solving equation 1 and equation 2,
$\Rightarrow \dfrac{{3\left( {x + 6} \right)}}{3} = 2y $
$\Rightarrow x + 6 = 2y $…………… (3)
Now put value of equation 1 in equation 3,
We get-
$ x + 6 = 2(4x – 11) $
$\Rightarrow x + 6 = 8x – 22 $
$\Rightarrow 6 + 22 = 8x – 22 $
$\Rightarrow 6 + 22 = 8x – x $
$\Rightarrow 28 = 7x $
$\Rightarrow x = 4 $
Now substituting the value of x in equation 1,
We get-
$\Rightarrow y = 4 (4) – 11 $
$\Rightarrow y = 5 $
This implies-
Required fraction $ = \dfrac{x}{y} = \dfrac{4}{5}$
Note- While solving this question, we can assume any variables instead of x and y. As here we used a substitution method to solve these linear equations in 2 variables, we can also solve these linear equations in 2 variables using elimination method.
Complete step-by-step solution -
Let the numerator be $x$
And let the denominator be $y$
Now applying first condition i.e. When 3 is added to the denominator and 2 is subtracted from the numerator a fraction becomes $\dfrac{1}{4}$,
We get-
$\dfrac{{x - 2}}{{y + 3}} = \dfrac{1}{4}$
$\Rightarrow 4\left( {x - 2} \right) = \left( {y + 3} \right)$
$\Rightarrow 4x – 8 = y + 3$
$\Rightarrow 4x – 11 = y $………… (1)
And applying second condition i.e. when 6 is added to numerator and the denominator is multiplied by 3, it becomes $\dfrac{2}{3}$ ,
We get-
$\dfrac{{x + 6}}{{3y}} = \dfrac{2}{3}$
Solving equation 1 and equation 2,
$\Rightarrow \dfrac{{3\left( {x + 6} \right)}}{3} = 2y $
$\Rightarrow x + 6 = 2y $…………… (3)
Now put value of equation 1 in equation 3,
We get-
$ x + 6 = 2(4x – 11) $
$\Rightarrow x + 6 = 8x – 22 $
$\Rightarrow 6 + 22 = 8x – 22 $
$\Rightarrow 6 + 22 = 8x – x $
$\Rightarrow 28 = 7x $
$\Rightarrow x = 4 $
Now substituting the value of x in equation 1,
We get-
$\Rightarrow y = 4 (4) – 11 $
$\Rightarrow y = 5 $
This implies-
Required fraction $ = \dfrac{x}{y} = \dfrac{4}{5}$
Note- While solving this question, we can assume any variables instead of x and y. As here we used a substitution method to solve these linear equations in 2 variables, we can also solve these linear equations in 2 variables using elimination method.
Recently Updated Pages
Questions & Answers - Ask your doubts

Master Class 9 Social Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Trending doubts
The average rainfall in India is A 105cm B 90cm C 120cm class 10 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Who Won 36 Oscar Awards? Record Holder Revealed

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

