
\[2,6,18,54,162........................\] what is the nth term of the GP?
A. \[{\left( 3 \right)^{n - 1}}\]
B. \[2{\left( 3 \right)^{n - 1}}\]
C. \[2{\left( 3 \right)^{n + 1}}\]
D. \[2{\left( 3 \right)^n}\]
Answer
614.1k+ views
- Hint: First of all, find the first term and common ratio of the given series. Then the nth term of the series in a GP is given by \[{a_n} = a{r^{n - 1}}\] where \[a\] is the first term and \[r\] is the common ratio of the series of \[n\] terms. So, use this concept to reach the solution of the given problem.
Complete step-by-step solution -
The given series \[2,6,18,54,162........................\] is in GP.
We know that the nth term of the series in a GP is given by \[{a_n} = a{r^{n - 1}}\] where \[a\] is the first term and \[r\] is the common ratio of the series of \[n\] terms.
In the given series \[a = 2\]
The common ratio of a series in GP is given by \[\dfrac{{{a_2}}}{{{a_1}}}\].
So, the common ratio of the given series is \[\dfrac{6}{2} = 3\]
Therefore, the nth term of the given series is \[{a_n} = 2{\left( 3 \right)^{n - 1}}\]
Hence, the nth terms of the series \[2,6,18,54,162........................\] is \[2{\left( 3 \right)^{n - 1}}\]
Thus, the correct option is B. \[2{\left( 3 \right)^{n - 1}}\]
Note: The common ratio of a series in GP is given by \[\dfrac{{{a_2}}}{{{a_1}}}\]. A geometric progression, also known as geometric sequence, is a sequence of numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called common ratio.
Complete step-by-step solution -
The given series \[2,6,18,54,162........................\] is in GP.
We know that the nth term of the series in a GP is given by \[{a_n} = a{r^{n - 1}}\] where \[a\] is the first term and \[r\] is the common ratio of the series of \[n\] terms.
In the given series \[a = 2\]
The common ratio of a series in GP is given by \[\dfrac{{{a_2}}}{{{a_1}}}\].
So, the common ratio of the given series is \[\dfrac{6}{2} = 3\]
Therefore, the nth term of the given series is \[{a_n} = 2{\left( 3 \right)^{n - 1}}\]
Hence, the nth terms of the series \[2,6,18,54,162........................\] is \[2{\left( 3 \right)^{n - 1}}\]
Thus, the correct option is B. \[2{\left( 3 \right)^{n - 1}}\]
Note: The common ratio of a series in GP is given by \[\dfrac{{{a_2}}}{{{a_1}}}\]. A geometric progression, also known as geometric sequence, is a sequence of numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called common ratio.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

