
1) Solve for $x$: ${{\tan }^{-1}}(x-1)+{{\tan }^{-1}}(x)+{{\tan }^{-1}}(x+1)={{\tan }^{-1}}(3x)$
2) Prove that ${{\tan }^{-1}}\left( \dfrac{6x-8{{x}^{3}}}{1-12{{x}^{2}}} \right)-{{\tan }^{-1}}\left( \dfrac{4x}{1-4{{x}^{2}}} \right)={{\tan }^{-1}}2x;\left| 2x \right|<\dfrac{1}{\sqrt{3}}$
Answer
589.8k+ views
Hint: In the given questions we have to find the values of $x$for which is satisfy the condition. For this first of all we have to transpose ${{\tan }^{-1}}x$to the right-hand side and solve. We can transpose any terms, but we transpose that terms for whish calculation is easy. As the difference between $(x+1)-(x-1)=2\text{ and }3x-x=2x$ hence we transpose ${{\tan }^{-1}}x$. For solving such question, we have to use the formula ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$ and ${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)$
It should be noted that the above both formula valid if $xy<1$, in the first formula and $xy>-1$ in the second formula.
Complete step by step answer:
From question we have
${{\tan }^{-1}}(x-1)+{{\tan }^{-1}}(x)+{{\tan }^{-1}}(x+1)={{\tan }^{-1}}(3x)$
Now transposing ${{\tan }^{-1}}x$to the right-hand side we can write
${{\tan }^{-1}}(x-1)+{{\tan }^{-1}}(x+1)={{\tan }^{-1}}(3x)-{{\tan }^{-1}}(x)$
Now here we have to use the formula
${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$ and ${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)$
We can write further
$\begin{align}
& {{\tan }^{-1}}\left( x-1 \right)+{{\tan }^{-1}}\left( x+1 \right)={{\tan }^{-1}}\left( \dfrac{x-1+x+1}{1-\left( x-1 \right)\left( x+1 \right)} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( x-1 \right)+{{\tan }^{-1}}\left( x+1 \right)={{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right)-----(1) \\
\end{align}$
Now we can write right-hand side as
$\begin{align}
& {{\tan }^{-1}}(3x)-{{\tan }^{-1}}(x)={{\tan }^{-1}}\left( \dfrac{3x-x}{1+(3x)(x)} \right) \\
& {{\tan }^{-1}}(3x)-{{\tan }^{-1}}(x)={{\tan }^{-1}}\left( \dfrac{2x}{1+3{{x}^{2}}} \right)-----(2) \\
\end{align}$
Now from $(1)\text{ and }(2)$we can write further
${{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right)={{\tan }^{-1}}\left( \dfrac{2x}{1+3{{x}^{2}}} \right)$
Now we take tangent to the both side we can write
$\tan \left\{ {{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right) \right\}=\tan \left\{ {{\tan }^{-1}}\left( \dfrac{2x}{1+3{{x}^{2}}} \right) \right\}$
As we know that $\tan ({{\tan }^{-1}}x)=x$, so we can write further
$\dfrac{2x}{2-{{x}^{2}}}=\dfrac{2x}{1+3{{x}^{2}}}$
Further we can write
$\begin{align}
& 2-{{x}^{2}}=1+3{{x}^{2}} \\
& \Rightarrow 4{{x}^{2}}=1 \\
& \Rightarrow {{x}^{2}}=\dfrac{1}{2} \\
& \Rightarrow x=\pm \dfrac{1}{\sqrt{2}} \\
\end{align}$
Here we take $x=\dfrac{+1}{\sqrt{2}}$and ignore the negative value as ${{\tan }^{-1}}(x-1)$is negative.
Now for the second part we have
${{\tan }^{-1}}\left( \dfrac{6x-8{{x}^{3}}}{1-12{{x}^{2}}} \right)-{{\tan }^{-1}}\left( \dfrac{4x}{1-4{{x}^{2}}} \right)={{\tan }^{-1}}2x;\left| 2x \right|<\dfrac{1}{\sqrt{3}}$
Now we take left-hand side
${{\tan }^{-1}}\left( \dfrac{6x-8{{x}^{3}}}{1-12{{x}^{2}}} \right)-{{\tan }^{-1}}\left( \dfrac{4x}{1-4{{x}^{2}}} \right)$
Here we substitute $2x=\tan \theta $
So, we can write
${{\tan }^{-1}}\left( \dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta } \right)-{{\tan }^{-1}}\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)$
As we know that
$\tan 3\theta =\left( \dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta } \right)\text{ and tan2}\theta \text{=}\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)$
So, using the above formula we can write
\[\begin{align}
& {{\tan }^{-1}}\left( \tan 3\theta \right)-{{\tan }^{-1}}\left( \tan 2\theta \right) \\
& =3\theta -2\theta \\
& =\theta \\
\end{align}\]
Now we put the value of $\theta $we can write
$\theta ={{\tan }^{-1}}2x$
Hence, we can write
${{\tan }^{-1}}\left( \dfrac{6x-8{{x}^{3}}}{1-12{{x}^{2}}} \right)-{{\tan }^{-1}}\left( \dfrac{4x}{1-4{{x}^{2}}} \right)={{\tan }^{-1}}2x$
Hence, second part of the question is proved.
Note:
When we have to solve the inverse trigonometric function, we must check that the given function is invertible or not in the given Domain.
A one-one onto function is called an invertible function.
If $f:X\to Y$be a one-one onto function, then each $y\in Y$, there exist unique element $x\in X$such that $f(x)=y$
It should be noted that the above both formula valid if $xy<1$, in the first formula and $xy>-1$ in the second formula.
Complete step by step answer:
From question we have
${{\tan }^{-1}}(x-1)+{{\tan }^{-1}}(x)+{{\tan }^{-1}}(x+1)={{\tan }^{-1}}(3x)$
Now transposing ${{\tan }^{-1}}x$to the right-hand side we can write
${{\tan }^{-1}}(x-1)+{{\tan }^{-1}}(x+1)={{\tan }^{-1}}(3x)-{{\tan }^{-1}}(x)$
Now here we have to use the formula
${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$ and ${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)$
We can write further
$\begin{align}
& {{\tan }^{-1}}\left( x-1 \right)+{{\tan }^{-1}}\left( x+1 \right)={{\tan }^{-1}}\left( \dfrac{x-1+x+1}{1-\left( x-1 \right)\left( x+1 \right)} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( x-1 \right)+{{\tan }^{-1}}\left( x+1 \right)={{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right)-----(1) \\
\end{align}$
Now we can write right-hand side as
$\begin{align}
& {{\tan }^{-1}}(3x)-{{\tan }^{-1}}(x)={{\tan }^{-1}}\left( \dfrac{3x-x}{1+(3x)(x)} \right) \\
& {{\tan }^{-1}}(3x)-{{\tan }^{-1}}(x)={{\tan }^{-1}}\left( \dfrac{2x}{1+3{{x}^{2}}} \right)-----(2) \\
\end{align}$
Now from $(1)\text{ and }(2)$we can write further
${{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right)={{\tan }^{-1}}\left( \dfrac{2x}{1+3{{x}^{2}}} \right)$
Now we take tangent to the both side we can write
$\tan \left\{ {{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right) \right\}=\tan \left\{ {{\tan }^{-1}}\left( \dfrac{2x}{1+3{{x}^{2}}} \right) \right\}$
As we know that $\tan ({{\tan }^{-1}}x)=x$, so we can write further
$\dfrac{2x}{2-{{x}^{2}}}=\dfrac{2x}{1+3{{x}^{2}}}$
Further we can write
$\begin{align}
& 2-{{x}^{2}}=1+3{{x}^{2}} \\
& \Rightarrow 4{{x}^{2}}=1 \\
& \Rightarrow {{x}^{2}}=\dfrac{1}{2} \\
& \Rightarrow x=\pm \dfrac{1}{\sqrt{2}} \\
\end{align}$
Here we take $x=\dfrac{+1}{\sqrt{2}}$and ignore the negative value as ${{\tan }^{-1}}(x-1)$is negative.
Now for the second part we have
${{\tan }^{-1}}\left( \dfrac{6x-8{{x}^{3}}}{1-12{{x}^{2}}} \right)-{{\tan }^{-1}}\left( \dfrac{4x}{1-4{{x}^{2}}} \right)={{\tan }^{-1}}2x;\left| 2x \right|<\dfrac{1}{\sqrt{3}}$
Now we take left-hand side
${{\tan }^{-1}}\left( \dfrac{6x-8{{x}^{3}}}{1-12{{x}^{2}}} \right)-{{\tan }^{-1}}\left( \dfrac{4x}{1-4{{x}^{2}}} \right)$
Here we substitute $2x=\tan \theta $
So, we can write
${{\tan }^{-1}}\left( \dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta } \right)-{{\tan }^{-1}}\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)$
As we know that
$\tan 3\theta =\left( \dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta } \right)\text{ and tan2}\theta \text{=}\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)$
So, using the above formula we can write
\[\begin{align}
& {{\tan }^{-1}}\left( \tan 3\theta \right)-{{\tan }^{-1}}\left( \tan 2\theta \right) \\
& =3\theta -2\theta \\
& =\theta \\
\end{align}\]
Now we put the value of $\theta $we can write
$\theta ={{\tan }^{-1}}2x$
Hence, we can write
${{\tan }^{-1}}\left( \dfrac{6x-8{{x}^{3}}}{1-12{{x}^{2}}} \right)-{{\tan }^{-1}}\left( \dfrac{4x}{1-4{{x}^{2}}} \right)={{\tan }^{-1}}2x$
Hence, second part of the question is proved.
Note:
When we have to solve the inverse trigonometric function, we must check that the given function is invertible or not in the given Domain.
A one-one onto function is called an invertible function.
If $f:X\to Y$be a one-one onto function, then each $y\in Y$, there exist unique element $x\in X$such that $f(x)=y$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

