
1) Solve for $x$: ${{\tan }^{-1}}(x-1)+{{\tan }^{-1}}(x)+{{\tan }^{-1}}(x+1)={{\tan }^{-1}}(3x)$
2) Prove that ${{\tan }^{-1}}\left( \dfrac{6x-8{{x}^{3}}}{1-12{{x}^{2}}} \right)-{{\tan }^{-1}}\left( \dfrac{4x}{1-4{{x}^{2}}} \right)={{\tan }^{-1}}2x;\left| 2x \right|<\dfrac{1}{\sqrt{3}}$
Answer
577.8k+ views
Hint: In the given questions we have to find the values of $x$for which is satisfy the condition. For this first of all we have to transpose ${{\tan }^{-1}}x$to the right-hand side and solve. We can transpose any terms, but we transpose that terms for whish calculation is easy. As the difference between $(x+1)-(x-1)=2\text{ and }3x-x=2x$ hence we transpose ${{\tan }^{-1}}x$. For solving such question, we have to use the formula ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$ and ${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)$
It should be noted that the above both formula valid if $xy<1$, in the first formula and $xy>-1$ in the second formula.
Complete step by step answer:
From question we have
${{\tan }^{-1}}(x-1)+{{\tan }^{-1}}(x)+{{\tan }^{-1}}(x+1)={{\tan }^{-1}}(3x)$
Now transposing ${{\tan }^{-1}}x$to the right-hand side we can write
${{\tan }^{-1}}(x-1)+{{\tan }^{-1}}(x+1)={{\tan }^{-1}}(3x)-{{\tan }^{-1}}(x)$
Now here we have to use the formula
${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$ and ${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)$
We can write further
$\begin{align}
& {{\tan }^{-1}}\left( x-1 \right)+{{\tan }^{-1}}\left( x+1 \right)={{\tan }^{-1}}\left( \dfrac{x-1+x+1}{1-\left( x-1 \right)\left( x+1 \right)} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( x-1 \right)+{{\tan }^{-1}}\left( x+1 \right)={{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right)-----(1) \\
\end{align}$
Now we can write right-hand side as
$\begin{align}
& {{\tan }^{-1}}(3x)-{{\tan }^{-1}}(x)={{\tan }^{-1}}\left( \dfrac{3x-x}{1+(3x)(x)} \right) \\
& {{\tan }^{-1}}(3x)-{{\tan }^{-1}}(x)={{\tan }^{-1}}\left( \dfrac{2x}{1+3{{x}^{2}}} \right)-----(2) \\
\end{align}$
Now from $(1)\text{ and }(2)$we can write further
${{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right)={{\tan }^{-1}}\left( \dfrac{2x}{1+3{{x}^{2}}} \right)$
Now we take tangent to the both side we can write
$\tan \left\{ {{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right) \right\}=\tan \left\{ {{\tan }^{-1}}\left( \dfrac{2x}{1+3{{x}^{2}}} \right) \right\}$
As we know that $\tan ({{\tan }^{-1}}x)=x$, so we can write further
$\dfrac{2x}{2-{{x}^{2}}}=\dfrac{2x}{1+3{{x}^{2}}}$
Further we can write
$\begin{align}
& 2-{{x}^{2}}=1+3{{x}^{2}} \\
& \Rightarrow 4{{x}^{2}}=1 \\
& \Rightarrow {{x}^{2}}=\dfrac{1}{2} \\
& \Rightarrow x=\pm \dfrac{1}{\sqrt{2}} \\
\end{align}$
Here we take $x=\dfrac{+1}{\sqrt{2}}$and ignore the negative value as ${{\tan }^{-1}}(x-1)$is negative.
Now for the second part we have
${{\tan }^{-1}}\left( \dfrac{6x-8{{x}^{3}}}{1-12{{x}^{2}}} \right)-{{\tan }^{-1}}\left( \dfrac{4x}{1-4{{x}^{2}}} \right)={{\tan }^{-1}}2x;\left| 2x \right|<\dfrac{1}{\sqrt{3}}$
Now we take left-hand side
${{\tan }^{-1}}\left( \dfrac{6x-8{{x}^{3}}}{1-12{{x}^{2}}} \right)-{{\tan }^{-1}}\left( \dfrac{4x}{1-4{{x}^{2}}} \right)$
Here we substitute $2x=\tan \theta $
So, we can write
${{\tan }^{-1}}\left( \dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta } \right)-{{\tan }^{-1}}\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)$
As we know that
$\tan 3\theta =\left( \dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta } \right)\text{ and tan2}\theta \text{=}\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)$
So, using the above formula we can write
\[\begin{align}
& {{\tan }^{-1}}\left( \tan 3\theta \right)-{{\tan }^{-1}}\left( \tan 2\theta \right) \\
& =3\theta -2\theta \\
& =\theta \\
\end{align}\]
Now we put the value of $\theta $we can write
$\theta ={{\tan }^{-1}}2x$
Hence, we can write
${{\tan }^{-1}}\left( \dfrac{6x-8{{x}^{3}}}{1-12{{x}^{2}}} \right)-{{\tan }^{-1}}\left( \dfrac{4x}{1-4{{x}^{2}}} \right)={{\tan }^{-1}}2x$
Hence, second part of the question is proved.
Note:
When we have to solve the inverse trigonometric function, we must check that the given function is invertible or not in the given Domain.
A one-one onto function is called an invertible function.
If $f:X\to Y$be a one-one onto function, then each $y\in Y$, there exist unique element $x\in X$such that $f(x)=y$
It should be noted that the above both formula valid if $xy<1$, in the first formula and $xy>-1$ in the second formula.
Complete step by step answer:
From question we have
${{\tan }^{-1}}(x-1)+{{\tan }^{-1}}(x)+{{\tan }^{-1}}(x+1)={{\tan }^{-1}}(3x)$
Now transposing ${{\tan }^{-1}}x$to the right-hand side we can write
${{\tan }^{-1}}(x-1)+{{\tan }^{-1}}(x+1)={{\tan }^{-1}}(3x)-{{\tan }^{-1}}(x)$
Now here we have to use the formula
${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$ and ${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)$
We can write further
$\begin{align}
& {{\tan }^{-1}}\left( x-1 \right)+{{\tan }^{-1}}\left( x+1 \right)={{\tan }^{-1}}\left( \dfrac{x-1+x+1}{1-\left( x-1 \right)\left( x+1 \right)} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( x-1 \right)+{{\tan }^{-1}}\left( x+1 \right)={{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right)-----(1) \\
\end{align}$
Now we can write right-hand side as
$\begin{align}
& {{\tan }^{-1}}(3x)-{{\tan }^{-1}}(x)={{\tan }^{-1}}\left( \dfrac{3x-x}{1+(3x)(x)} \right) \\
& {{\tan }^{-1}}(3x)-{{\tan }^{-1}}(x)={{\tan }^{-1}}\left( \dfrac{2x}{1+3{{x}^{2}}} \right)-----(2) \\
\end{align}$
Now from $(1)\text{ and }(2)$we can write further
${{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right)={{\tan }^{-1}}\left( \dfrac{2x}{1+3{{x}^{2}}} \right)$
Now we take tangent to the both side we can write
$\tan \left\{ {{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right) \right\}=\tan \left\{ {{\tan }^{-1}}\left( \dfrac{2x}{1+3{{x}^{2}}} \right) \right\}$
As we know that $\tan ({{\tan }^{-1}}x)=x$, so we can write further
$\dfrac{2x}{2-{{x}^{2}}}=\dfrac{2x}{1+3{{x}^{2}}}$
Further we can write
$\begin{align}
& 2-{{x}^{2}}=1+3{{x}^{2}} \\
& \Rightarrow 4{{x}^{2}}=1 \\
& \Rightarrow {{x}^{2}}=\dfrac{1}{2} \\
& \Rightarrow x=\pm \dfrac{1}{\sqrt{2}} \\
\end{align}$
Here we take $x=\dfrac{+1}{\sqrt{2}}$and ignore the negative value as ${{\tan }^{-1}}(x-1)$is negative.
Now for the second part we have
${{\tan }^{-1}}\left( \dfrac{6x-8{{x}^{3}}}{1-12{{x}^{2}}} \right)-{{\tan }^{-1}}\left( \dfrac{4x}{1-4{{x}^{2}}} \right)={{\tan }^{-1}}2x;\left| 2x \right|<\dfrac{1}{\sqrt{3}}$
Now we take left-hand side
${{\tan }^{-1}}\left( \dfrac{6x-8{{x}^{3}}}{1-12{{x}^{2}}} \right)-{{\tan }^{-1}}\left( \dfrac{4x}{1-4{{x}^{2}}} \right)$
Here we substitute $2x=\tan \theta $
So, we can write
${{\tan }^{-1}}\left( \dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta } \right)-{{\tan }^{-1}}\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)$
As we know that
$\tan 3\theta =\left( \dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta } \right)\text{ and tan2}\theta \text{=}\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)$
So, using the above formula we can write
\[\begin{align}
& {{\tan }^{-1}}\left( \tan 3\theta \right)-{{\tan }^{-1}}\left( \tan 2\theta \right) \\
& =3\theta -2\theta \\
& =\theta \\
\end{align}\]
Now we put the value of $\theta $we can write
$\theta ={{\tan }^{-1}}2x$
Hence, we can write
${{\tan }^{-1}}\left( \dfrac{6x-8{{x}^{3}}}{1-12{{x}^{2}}} \right)-{{\tan }^{-1}}\left( \dfrac{4x}{1-4{{x}^{2}}} \right)={{\tan }^{-1}}2x$
Hence, second part of the question is proved.
Note:
When we have to solve the inverse trigonometric function, we must check that the given function is invertible or not in the given Domain.
A one-one onto function is called an invertible function.
If $f:X\to Y$be a one-one onto function, then each $y\in Y$, there exist unique element $x\in X$such that $f(x)=y$
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

