
1 cup = 8 ounces, 10 ounces = 60 teaspoons. Based on the given information above, how many teaspoons are equivalent to \[\dfrac{1}{4}\] cup?
A. 12
B. 10
C. 8
D. 6
Answer
523.2k+ views
Hint: To solve the question, we have to solve the two given equations and analyse the connection between quantities of cup, ounces, teaspoons to ease the procedure of solving. To solve further, find the value of \[\dfrac{1}{4}\] cup in terms of ounces and then calculate the number of teaspoons which is equivalent to the obtained ounces value.
Complete step-by-step answer:
The given relation between cup and ounces is given by 1 cup = 8 ounces
Divide the above equation by 4 on the both sides of the equation to obtain the value of \[\dfrac{1}{4}\] cup
Thus, we get
\[\dfrac{1}{4}\] cup = \[\dfrac{8}{4}\] ounces
We know that 8 is a product of 4 and 2. Thus, we get
\[\dfrac{1}{4}\] cup = \[\dfrac{4\times 2}{4}\] ounces
By cancelling the common terms on both numerator and denominator, we get
\[\dfrac{1}{4}\] cup = 2 ounces …… (1)
The given relation between teaspoons and ounces is given by 10 ounces = 60 teaspoons
The above equation can also be written as,
\[1\times 10\] ounces = \[6\times 10\] teaspoons
By cancelling the common terms on both the sides of the equation, we get
1 ounce = 6 teaspoons
By multiplying both the sides of the equation with 2, to obtain the value of 2 ounces, we get
\[1\times 2\] ounces = \[6\times 2\] teaspoons
By substituting the products of the numbers, we get
2 ounces = 12 teaspoons
By substituting the values from equation (1) in the above equation, we get
\[\dfrac{1}{4}\] cup = 12 teaspoons.
Hence, option A is the right choice.
Note: The possibility of mistake can be not able to analyse the connection between the two equations given. The alternative way of solving the question can be by using options calculation method, by which we use reverse chronology, we will calculate the options value in terms of cup to check which option is equivalent to \[\dfrac{1}{4}\] cup. Thus, we can arrive at the answer.
Complete step-by-step answer:
The given relation between cup and ounces is given by 1 cup = 8 ounces
Divide the above equation by 4 on the both sides of the equation to obtain the value of \[\dfrac{1}{4}\] cup
Thus, we get
\[\dfrac{1}{4}\] cup = \[\dfrac{8}{4}\] ounces
We know that 8 is a product of 4 and 2. Thus, we get
\[\dfrac{1}{4}\] cup = \[\dfrac{4\times 2}{4}\] ounces
By cancelling the common terms on both numerator and denominator, we get
\[\dfrac{1}{4}\] cup = 2 ounces …… (1)
The given relation between teaspoons and ounces is given by 10 ounces = 60 teaspoons
The above equation can also be written as,
\[1\times 10\] ounces = \[6\times 10\] teaspoons
By cancelling the common terms on both the sides of the equation, we get
1 ounce = 6 teaspoons
By multiplying both the sides of the equation with 2, to obtain the value of 2 ounces, we get
\[1\times 2\] ounces = \[6\times 2\] teaspoons
By substituting the products of the numbers, we get
2 ounces = 12 teaspoons
By substituting the values from equation (1) in the above equation, we get
\[\dfrac{1}{4}\] cup = 12 teaspoons.
Hence, option A is the right choice.
Note: The possibility of mistake can be not able to analyse the connection between the two equations given. The alternative way of solving the question can be by using options calculation method, by which we use reverse chronology, we will calculate the options value in terms of cup to check which option is equivalent to \[\dfrac{1}{4}\] cup. Thus, we can arrive at the answer.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What are the public facilities provided by the government? Also explain each facility

Difference between mass and weight class 10 physics CBSE

Statistics in singular sense includes A Collection class 10 maths CBSE
