RD Sharma Solutions for Class 8 Maths - Mensuration II - Free PDF Download
FAQs on RD Sharma Class 8 Maths Solutions Chapter 21 - Mensuration II
1. What is the Cuboid's Surface Area?
The entire area of the cuboid's surfaces is its surface area. Because a cuboid is a three-dimensional solid form (whose dimensions are length, breadth, and height), the value of its surface area is determined by those dimensions. The value of a cuboid's surface area varies when any of its dimensions are changed. (unit)2 is the unit for the surface area of a cuboid. Surface area is measured in square meters or square centimeters in metric measurements, and square inches or square feet in USCS units.
2. What is the difference between a cube and a cuboid?
A cube or cuboid is a three-dimensional form with six faces, eight vertices, and twelve edges. Both shapes appear to be almost the same, however, they have different qualities. The main distinction is that a cube has the same length, width, and height on all sides, but a cuboid has varied length, breadth, and height. The area and volume of a cube, and a cuboid, are different.
3. How to find the total and lateral surface area of the cuboid?
Since you know that the cuboid has both, total surface area and lateral surface area, here is how both of them are found- The total surface area of the cuboid is calculated by summing the areas of each face, whereas the lateral surface area is calculated by subtracting the areas of the base and top faces from the total surface area. S = 2 (lb + bh + lh)
L = 2 (lb + bh + lh) - (2 lb) = 2h(l + b)
"S" stands for total surface area, whereas "L" stands for lateral surface area. The length (l), width (b), and height (h) of a cuboid can be used to indicate the total surface area and lateral surface area.
4. The formulas seem to be confusing with each other, how to deal with that?
It’s normal for students to get confused among so many formulas of volumes and areas of cuboids and cubes but to deal with that you must do some self-work. The suggestion would be to make notes and practice questions regularly. Do not forget to note down the formulas with the help of a flowchart which in turn will help you to classify and distinguish among them. Moreover, keep practicing or seeing every day so that your memory stays strong enough to remember the formulas. Even after then, if you feel like revising, visit Vedantu Mensuration Formulas where you can find all formulas for different shapes.
5. What is the long definition of a cube?
A cube is a three-dimensional solid object having six square faces with equal length on all sides. Six square faces, eight vertices, and twelve edges make up a cube. Because the 3D figure is a square with all sides the same length, the length, width, and height of a cube are all the same. The faces of a cube have a common boundary called the edge. Each face of a cube is connected to four vertices and four edges, whereas the vertex is connected to three edges and three faces, and the edges are connected to two faces and two vertices.