","comment":{"@type":"Comment","text":" The position vector of a point is the distance of the point with respect to the origin of the system in the vector form."},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\hat{r}=\\dfrac{3\\hat{i}+\\hat{j}+2\\hat{k}}{\\sqrt{19}}$$","position":1},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\hat{r}=\\dfrac{\\hat{i}+3\\hat{j}+4\\hat{k}}{\\sqrt{39}}$$","position":2},{"@type":"Answer","encodingFormat":"text/html","text":" None of the above.","position":3}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\hat{r}=\\dfrac{4\\hat{i}+3\\hat{j}+2\\hat{k}}{\\sqrt{29}}$$","position":0,"answerExplanation":{"@type":"Comment","text":"$$ \\text{Given that;} \\\\ \\vec{r}=8\\hat{i}+6\\hat{j}+4\\hat{k} \\\\ \\Rightarrow \\left| {\\vec{r}} \\right|=\\sqrt{{{8}^{2}}+{{6}^{2}}+{{4}^{2}}} \\\\ \\Rightarrow \\left| {\\vec{r}} \\right|=\\sqrt{64+36+16} \\\\ \\Rightarrow \\left| {\\vec{r}} \\right|=\\sqrt{116} \\\\ \\Rightarrow \\left| {\\vec{r}} \\right|=2\\sqrt{29} \\\\ \\text{Unit vector is given by;} \\\\ \\hat{r}=\\dfrac{{\\vec{r}}}{\\left| {\\vec{r}} \\right|} \\\\ \\Rightarrow \\hat{r}=\\dfrac{8\\hat{i}+6\\hat{j}+4\\hat{k}}{2\\sqrt{29}} \\\\ \\therefore \\hat{r}=\\dfrac{4\\hat{i}+3\\hat{j}+2\\hat{k}}{\\sqrt{29}} $$","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","educationalLevel":"beginner","name":"Unit vectors Quiz 1","text":" Imagine two vectors start from the same point and are given as $$\\vec{a}=3\\hat{i}+4\\hat{j}-\\hat{k}$$ and $$\\vec{b}=2\\hat{i}-5\\hat{j}+\\hat{k}$$ , evaluate the unit vector in the direction of the resultant vector of these two vectors.","comment":{"@type":"Comment","text":" The unit vector along the resultant of the given vectors is the unit vector of the resultant itself."},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\dfrac{\\hat{i}-5\\hat{j}}{\\sqrt{26}}$$","position":0},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\dfrac{5\\hat{i}-\\hat{j}}{\\sqrt{24}}$$","position":2},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\dfrac{\\hat{i}-5\\hat{j}}{\\sqrt{24}}$$","position":3}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\dfrac{5\\hat{i}-\\hat{j}}{\\sqrt{26}}$$","position":1,"answerExplanation":{"@type":"Comment","text":" $$ \\text{Resultant of two vectors is given as;} \\\\ \\vec{r}=\\vec{a}+\\vec{b} \\\\ \\Rightarrow \\vec{r}=3\\hat{i}+4\\hat{j}-\\hat{k}+2\\hat{i}-5\\hat{j}+\\hat{k} \\\\ \\Rightarrow \\vec{r}=5\\hat{i}-\\hat{j} \\\\ \\text{The magnitude of the resultant is given by;} \\\\ \\left| {\\vec{r}} \\right|=\\sqrt{{{5}^{2}}+{{1}^{2}}}=\\sqrt{25+1}=\\sqrt{26} \\\\ \\text{The unit vector in the direction of resultant }r \\\\ \\hat{r}=\\dfrac{{\\vec{r}}}{\\left| {\\vec{r}} \\right|} \\\\ \\therefore \\hat{r}=\\dfrac{5\\hat{i}-\\hat{j}}{\\sqrt{26}}$$","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","educationalLevel":"beginner","name":"Unit vectors Quiz 1","text":" How is concentration of reactant ($${{C}_{r}}$$) and the rate of reaction (k) related:Imagine a vector $$\\hat{r}$$ to be a unit vector and the point $$A\\left( a,3a,4a \\right)$$ to lie in the first quadrant, determine the value of the variable $$a$$ $$ \\\\ $$ ","comment":{"@type":"Comment","text":" The position vector of the given point is the vector of the point with respect to the origin and since it is a unit vector the magnitude will be equal to one."},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\sqrt{24}$$","position":0},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\sqrt{26}$$","position":1},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\dfrac{1}{\\sqrt{24}}$$","position":3}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\dfrac{1}{\\sqrt{26}}$$","position":2,"answerExplanation":{"@type":"Comment","text":" $$ \\text{The vector }\\vec{r}\\text{ is given by;} \\\\ \\vec{r}=a\\hat{i}+3a\\hat{j}+4a\\hat{k} \\\\ \\text{The magnitude of }\\vec{r}\\text{ is given by;} \\\\ \\left| {\\vec{r}} \\right|=\\sqrt{{{a}^{2}}+{{\\left( 3a \\right)}^{2}}+{{\\left( 4a \\right)}^{2}}} \\\\ \\Rightarrow \\left| {\\vec{r}} \\right|=\\sqrt{{{a}^{2}}+6{{a}^{2}}+25{{a}^{2}}} \\\\ \\Rightarrow \\left| {\\vec{r}} \\right|=\\sqrt{26{{a}^{2}}} \\\\ \\text{According to the given condition;} \\\\ \\sqrt{26{{a}^{2}}}=1 \\\\ \\Rightarrow 26{{a}^{2}}=1 \\\\ \\Rightarrow {{a}^{2}}=\\dfrac{1}{26} \\\\ \\Rightarrow a=\\pm \\sqrt{\\dfrac{1}{26}} \\\\ \\text{Given that, }A\\text{ lies in the first quadrant;} \\\\ \\text{Therefore all the coordinates of }A\\text{ should be positive;} \\\\ a > 0 \\\\ \\therefore a=\\dfrac{1}{\\sqrt{26}}$$","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","educationalLevel":"beginner","name":"Unit vectors Quiz 1","text":" Rotate the position vector $$4\\hat{i}+3\\hat{j}$$ by an angle of $${{30}^{\\circ }}$$ in the anticlockwise direction.","comment":{"@type":"Comment","text":" The assumption of a unit vector at an angle of ${{30}^{\\circ }}$ from the given vector will give the rotated vector."},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\left( 5\\sqrt{\\dfrac{57-24\\sqrt{3}}{955-360\\sqrt{3}}} \\right)\\hat{i}+\\left( 20\\sqrt{\\dfrac{43+24\\sqrt{3}}{955-360\\sqrt{3}}} \\right)\\hat{j}$$","position":0},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\left( \\sqrt{\\dfrac{24-57\\sqrt{3}}{955-360\\sqrt{3}}} \\right)\\hat{i}+\\left( 5\\sqrt{\\dfrac{43+24\\sqrt{3}}{955-360\\sqrt{3}}} \\right)\\hat{j}$$","position":1},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\left( 20\\sqrt{\\dfrac{57-24\\sqrt{3}}{955-360\\sqrt{3}}} \\right)\\hat{i}+\\left( \\sqrt{\\dfrac{24+43\\sqrt{3}}{955-360\\sqrt{3}}} \\right)\\hat{j}$$","position":2}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\left( 20\\sqrt{\\dfrac{57-24\\sqrt{3}}{955-360\\sqrt{3}}} \\right)\\hat{i}+\\left( 5\\sqrt{\\dfrac{43+24\\sqrt{3}}{955-360\\sqrt{3}}} \\right)\\hat{j}$$","position":3,"answerExplanation":{"@type":"Comment","text":" $$ \\text{Let there be a unit vector above the given vector at an angle of }{{30}^{\\circ }}\\text{ to the given vector} \\\\ \\hat{a}=x\\hat{i}+y\\hat{j} \\\\ \\text{This unit vector makes an angle }\\phi \\text{ with the horizontal axis} \\\\ \\phi =\\theta \\text{+3}{{\\text{0}}^{\\circ }} \\\\ \\theta ={{\\tan }^{-1}}\\left( \\dfrac{3}{4} \\right)={{37}^{\\circ }} \\\\ \\Rightarrow \\tan \\phi =\\tan \\left( {{30}^{\\circ }}+{{37}^{\\circ }} \\right)=\\dfrac{y}{x} \\\\ \\Rightarrow \\dfrac{y}{x}=\\dfrac{\\tan {{30}^{\\circ }}+\\tan {{37}^{\\circ }}}{1-\\tan {{30}^{\\circ }}\\tan {{37}^{\\circ }}} \\\\ \\Rightarrow \\dfrac{y}{x}=\\dfrac{\\left( \\dfrac{1}{\\sqrt{3}}+\\dfrac{3}{4} \\right)}{\\left( 1-\\dfrac{\\sqrt{3}}{4} \\right)} \\\\ \\Rightarrow \\dfrac{y}{x}=\\dfrac{4+3\\sqrt{3}}{16\\sqrt{3}-12} \\\\ \\Rightarrow y=x\\left( \\dfrac{4+3\\sqrt{3}}{16\\sqrt{3}-12} \\right) \\\\ \\text{According to the assumption;} \\\\ {{x}^{2}}+{{y}^{2}}=1 \\\\ \\Rightarrow {{x}^{2}}+{{x}^{2}}{{\\left( \\dfrac{4+3\\sqrt{3}}{16\\sqrt{3}-12} \\right)}^{2}}=1 \\\\ \\Rightarrow x=4\\sqrt{\\dfrac{57-24\\sqrt{3}}{955-360\\sqrt{3}}} \\\\ \\text{Substituting the values;} \\\\ y=\\sqrt{1-{{x}^{2}}}=\\sqrt{1-\\dfrac{912-384\\sqrt{3}}{955-360\\sqrt{3}}} \\\\ \\Rightarrow y=\\sqrt{\\dfrac{43+24\\sqrt{3}}{955-360\\sqrt{3}}} \\\\ \\text{If the given vector is rotated by 3}{{\\text{0}}^{\\circ }}; \\\\ \\vec{R}=\\left| {\\vec{r}} \\right|\\hat{a} \\\\ \\Rightarrow \\left| {\\vec{r}} \\right|=\\sqrt{16+9}=\\sqrt{25}=5 \\\\ \\Rightarrow \\vec{R}=5\\left[ \\left( 4\\sqrt{\\dfrac{57-24\\sqrt{3}}{955-360\\sqrt{3}}} \\right)i+\\left( \\sqrt{\\dfrac{43+24\\sqrt{3}}{955-360\\sqrt{3}}} \\right)j \\right] \\\\ \\therefore \\vec{R}=\\left[ \\left( 20\\sqrt{\\dfrac{57-24\\sqrt{3}}{955-360\\sqrt{3}}} \\right)i+\\left( 5\\sqrt{\\dfrac{43+24\\sqrt{3}}{955-360\\sqrt{3}}} \\right)j \\right]$$","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","educationalLevel":"beginner","name":"Unit vectors Quiz 1","text":" Imagine two position vectors are given as $$\\vec{a}=3\\hat{i}+4\\hat{j}+\\hat{k}$$ and $$\\vec{b}=\\hat{i}+6\\hat{j}-\\hat{k}$$ , evaluate a vector which is served by a magnitude of $$2$$ units such that this vector is perpendicular to their resultant.","comment":{"@type":"Comment","text":" The unit vector that is perpendicular to the resultant will give us the direction of the required vector and the magnitude is already given."},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\dfrac{-10}{\\sqrt{29}}\\hat{i}-\\dfrac{4}{\\sqrt{29}}\\hat{j}\\text{ , }\\dfrac{10}{\\sqrt{29}}\\hat{i}+\\dfrac{4}{\\sqrt{29}}\\hat{j}$$","position":0},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\dfrac{-10}{\\sqrt{29}}\\hat{i}-\\dfrac{4}{\\sqrt{29}}\\hat{j}\\text{ , }\\dfrac{-10}{\\sqrt{29}}\\hat{i}+\\dfrac{4}{\\sqrt{29}}\\hat{j}$$","position":2},{"@type":"Answer","encodingFormat":"text/html","text":" None of these.","position":3}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\dfrac{10}{\\sqrt{29}}\\hat{i}-\\dfrac{4}{\\sqrt{29}}\\hat{j}\\text{ , }\\dfrac{-10}{\\sqrt{29}}\\hat{i}+\\dfrac{4}{\\sqrt{29}}\\hat{j}$$","position":1,"answerExplanation":{"@type":"Comment","text":" $$ \\text{The resultant of the two given vectors is;} \\\\ \\vec{R}=\\vec{a}+\\vec{b} \\\\ \\Rightarrow \\vec{R}=3\\hat{i}+4\\hat{j}+\\hat{k}+\\hat{i}+6\\hat{j}-\\hat{k} \\\\ \\Rightarrow \\vec{R}=4\\hat{i}+10\\hat{j} \\\\ \\Rightarrow \\left| {\\vec{R}} \\right|=\\sqrt{{{4}^{2}}+{{10}^{2}}}=\\sqrt{16+100}=\\sqrt{116} \\\\ \\Rightarrow \\left| {\\vec{R}} \\right|=2\\sqrt{29} \\\\ \\text{Let }X=xi+yj\\text{ be the required vector;} \\\\ \\hat{X}=\\dfrac{x\\hat{i}+y\\hat{j}}{2} \\\\ \\text{According to the given condition;} \\\\ \\hat{X}\\cdot \\vec{R}=0 \\\\ \\Rightarrow \\left( \\dfrac{x}{2}\\hat{i}+\\dfrac{y}{2}\\hat{j} \\right)\\cdot \\left( 4\\hat{i}+10\\hat{j} \\right)=0 \\\\ \\Rightarrow 2x+5y=0 \\\\ \\text{Also, }{{x}^{2}}+{{y}^{2}}=4 \\\\ \\text{Solving the above equations;} \\\\ \\Rightarrow x=\\dfrac{\\pm 10}{\\sqrt{29}} \\\\ \\Rightarrow y=\\dfrac{\\mp 4}{\\sqrt{29}} \\\\ \\therefore \\vec{X}=\\pm \\dfrac{10}{\\sqrt{29}}\\hat{i}\\mp \\dfrac{4}{\\sqrt{29}}\\hat{j} $$","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]}]}