","comment":{"@type":"Comment","text":" Use the cosine formula to calculate the value of the missing side and thus, use the calculated information to calculate the area using $A=\\dfrac{1}{2}ab\\sin C$"},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$A=\\dfrac{25\\sqrt{3}}{4}$$","position":0},{"@type":"Answer","encodingFormat":"text/html","text":" $$A=\\dfrac{25\\sqrt{3}}{2}$$","position":2},{"@type":"Answer","encodingFormat":"text/html","text":" $$A=\\dfrac{15\\sqrt{3}}{4}$$","position":3}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$A=\\dfrac{75\\sqrt{3}}{4}$$","position":1,"answerExplanation":{"@type":"Comment","text":" $$180-30-30=120\\\\ {{15}^{2}}={{x}^{2}}+{{x}^{2}}-2\\cdot x\\cdot x\\cdot \\cos 120 \\\\ 225=2{{x}^{2}}-2{{x}^{2}}\\cos 120 \\\\ \\Rightarrow 225=2{{x}^{2}}-2{{x}^{2}}\\cdot \\dfrac{-1}{2} \\\\ \\Rightarrow 225=2{{x}^{2}}+{{x}^{2}} \\\\ \\Rightarrow 75={{x}^{2}} \\\\ \\Rightarrow x=5\\sqrt{3} \\\\ A=\\dfrac{1}{2}ab\\sin C \\\\ \\Rightarrow A=\\dfrac{1}{2}\\cdot 15\\cdot 5\\sqrt{3}\\cdot \\sin 30 \\\\ \\Rightarrow A=\\dfrac{75\\sqrt{3}}{4} $$","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","educationalLevel":"beginner","name":"Laws of sine and cosine Quiz 1","text":" A right triangle ABC has side lengths $$AC=40$$ meters and $$BC=20\\sqrt{3}$$ meters. Calculate the length of $$AB$$. ","comment":{"@type":"Comment","text":" Use the given information to set up an equation following the cosine rule to calculate the missing angle. You can use $\\cos 30=\\dfrac{\\sqrt{3}}{2}$ to find the missing side. "},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$40$$","position":0},{"@type":"Answer","encodingFormat":"text/html","text":" $$15\\sqrt{3}$$","position":1},{"@type":"Answer","encodingFormat":"text/html","text":" $$60$$","position":3}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$20$$ ","position":2,"answerExplanation":{"@type":"Comment","text":" $$ {{x}^{2}}={{40}^{2}}+{{\\left( 20\\sqrt{3} \\right)}^{2}}-2\\cdot 40\\cdot 20\\sqrt{3}\\cdot \\cos 30 \\\\ \\Rightarrow {{x}^{2}}=1600+1200-1600\\sqrt{3}\\cdot \\cos 30 \\\\ \\Rightarrow {{x}^{2}}=2800-1600\\sqrt{3}\\cdot \\dfrac{\\sqrt{3}}{2} \\\\ \\Rightarrow {{x}^{2}}=2800-2400 \\\\ \\Rightarrow x=20$$","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","educationalLevel":"beginner","name":"Laws of sine and cosine Quiz 1","text":" A triangle $$XYZ$$ has lengths $$XY=10$$, and $$YZ=10\\sqrt{2}$$ kilometers. Calculate the side $$XZ$$ given that $$\\angle XYZ=105$$ and $$\\angle YXZ=45$$.
","comment":{"@type":"Comment","text":" Calculate the missing angle and use it to calculate the missing side using the sine formula."},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$AB=-\\dfrac{\\sqrt{2}-\\sqrt{3}}{2}$$","position":0},{"@type":"Answer","encodingFormat":"text/html","text":" $$AB=-\\dfrac{\\sqrt{2}+\\sqrt{6}}{2}$$","position":1},{"@type":"Answer","encodingFormat":"text/html","text":" $$AB=\\dfrac{\\sqrt{2}+\\sqrt{3}}{2}$$","position":2}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$AB=-\\dfrac{\\sqrt{2}-\\sqrt{6}}{2}$$","position":3,"answerExplanation":{"@type":"Comment","text":" $$180-105-45=30 \\\\ \\dfrac{\\sin 30}{AB}=\\dfrac{\\sin 105}{20}\\\\ \\Rightarrow XZ\\sin 105=20\\sin 30\\\\ \\Rightarrow AB=\\dfrac{20\\sin 30}{\\sin 105} \\\\ \\Rightarrow AB = \\dfrac{\\dfrac{1}{2}}{\\dfrac{\\sqrt{2} + \\sqrt{6}}{4}} \\\\ \\Rightarrow \\dfrac{2}{\\sqrt{2}+\\sqrt{6}} \\\\ \\Rightarrow \\dfrac{2\\left(\\sqrt{2} - \\sqrt{6}\\right)}{\\left(\\sqrt{2} + \\sqrt{6}\\right)\\left(\\sqrt{2} - \\sqrt{6}\\right)}\\\\ \\Rightarrow -\\dfrac{\\sqrt{2}-\\sqrt{6}}{2}$$","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","educationalLevel":"beginner","name":"Laws of sine and cosine Quiz 1","text":" A triangle with an angle $$30$$ degrees has an adjacent side of length $$10$$ meters which is also the longest side and an angle of $$45$$ degrees that is opposite to the given length. Calculate the area of the triangle.
","comment":{"@type":"Comment","text":" Use the sine formula to calculate the value of the missing side and thus, use the calculated information to calculate the area using $A=\\dfrac{1}{2}ab\\sin C$"},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$A=\\dfrac{75\\left( 1+\\sqrt{3} \\right)}{2}$$","position":1},{"@type":"Answer","encodingFormat":"text/html","text":" $$A=\\dfrac{55\\left( 1+\\sqrt{3} \\right)}{2}$$","position":2},{"@type":"Answer","encodingFormat":"text/html","text":" $$A=\\dfrac{37.5\\left( 2+\\sqrt{3} \\right)}{2}$$","position":3}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$A=\\dfrac{25\\left( 1+\\sqrt{3} \\right)}{2}$$","position":0,"answerExplanation":{"@type":"Comment","text":" $$ 180-30-45=105 \\\\ \\dfrac{\\sin 105}{x}=\\dfrac{\\sin 45}{10} \\\\ \\Rightarrow x\\sin 45=10\\sin 105 \\\\ \\Rightarrow x=\\dfrac{10\\sin 105}{\\sin 45}=\\dfrac{10\\left( \\dfrac{\\sqrt{2}+\\sqrt{6}}{4} \\right)}{\\dfrac{\\sqrt{2}}{2}}=\\dfrac{5\\left( \\sqrt{2}+\\sqrt{6} \\right)}{\\sqrt{2}} \\\\ \\Rightarrow x=5\\left( 1+\\sqrt{3} \\right) \\\\ A=\\dfrac{1}{2}ab\\sin C \\\\ \\Rightarrow A=\\dfrac{1}{2}\\cdot 5\\left( 1+\\sqrt{3} \\right)\\cdot 10\\sin 30 \\\\ \\Rightarrow A=25\\left( 1+\\sqrt{3} \\right)\\sin 30 \\\\ \\Rightarrow A=\\dfrac{25\\left( 1+\\sqrt{3} \\right)}{2}$$","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","educationalLevel":"beginner","name":"Laws of sine and cosine Quiz 1","text":" An obtuse triangle ABC had $$2$$ angles $$\\angle CAB=45$$ and $$\\angle ABC=120$$ with $$AC=20$$ meters. Calculate the length of $$AB$$.
","comment":{"@type":"Comment","text":" Calculate the missing angle and use it to calculate the missing side using the sine formula."},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$AB=\\dfrac{10\\sqrt{3}\\sqrt{2-\\sqrt{6}}}{3}$$","position":0},{"@type":"Answer","encodingFormat":"text/html","text":" $$AB=\\dfrac{20\\sqrt{3}\\sqrt{2-\\sqrt{6}}}{3}$$","position":1},{"@type":"Answer","encodingFormat":"text/html","text":" $$AB=\\dfrac{10\\sqrt{3}\\sqrt{2-\\sqrt{3}}}{3}$$","position":2}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$AB=\\dfrac{20\\sqrt{3}\\sqrt{2-\\sqrt{3}}}{3}$$","position":3,"answerExplanation":{"@type":"Comment","text":" $$ 180-120-45=15 \\\\ \\dfrac{\\sin 15}{AB}=\\dfrac{\\sin 120}{20} \\\\ \\Rightarrow AB\\sin 120=20\\sin 15 \\\\ \\Rightarrow AB=\\dfrac{20\\sin 15}{\\sin 120} \\\\ \\Rightarrow AB=\\dfrac{20\\left( \\dfrac{\\sqrt{2-\\sqrt{3}}}{2} \\right)}{\\dfrac{\\sqrt{3}}{2}}=\\dfrac{10\\sqrt{2-\\sqrt{3}}}{\\dfrac{\\sqrt{3}}{2}}=\\dfrac{20\\sqrt{3}\\sqrt{2-\\sqrt{3}}}{3} $$","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]}]}