","comment":{"@type":"Comment","text":" When a function is translated to the left, then substituting x in the old equation as x minus the number of units it has translated will be the new function."},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $${{\\left( x+6 \\right)}^{3}}+8$$","position":0},{"@type":"Answer","encodingFormat":"text/html","text":" $${{\\left( x-6 \\right)}^{3}}+8$$","position":1},{"@type":"Answer","encodingFormat":"text/html","text":" $${{\\left( x-4 \\right)}^{3}}+8$$","position":2}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $${{\\left( x+4 \\right)}^{3}}+8$$","position":3,"answerExplanation":{"@type":"Comment","text":" From the graph, it is clear that the function is translating 4 units to the left. $$ \\\\ $$ So, the required function is, $$ \\Rightarrow g\\left( x \\right)={{\\left( x-\\left( -4 \\right) \\right)}^{3}}+8 \\\\ \\Rightarrow g\\left( x \\right)={{\\left( x+4 \\right)}^{3}}+8 \\\\ $$","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","educationalLevel":"beginner","name":"Translating functions Quiz 1","text":" What is the root common to $$f\\left( x \\right)={{x}^{2}}+x-2$$ and the function $$g\\left( x \\right)$$ after translating $$f\\left( x \\right)$$ three units to the left. $$ \\\\ $$ ","comment":{"@type":"Comment","text":" Draw the graph of the new function. Check in the graph where they meet at the same point on the X- axis after translating to given units."},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\left( -1,0 \\right)$$","position":0},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\left( 1,0 \\right)$$","position":1},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\left( 2,0 \\right)$$","position":3}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\left( -2,0 \\right)$$","position":2,"answerExplanation":{"@type":"Comment","text":" From the graph, it is clear that the function is translating 3 units to the left. $$ \\\\ $$ That is, the new function is $$ \\\\ $$
$$ \\\\ $$ $$\\therefore $$The root they have in common is $$\\left( -2,0 \\right)$$.","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","educationalLevel":"beginner","name":"Translating functions Quiz 1","text":" In the given graph below, $$g\\left( x \\right)$$ is the translated function of $$f\\left( x \\right)$$. What is the area of the shaded region? $$ \\\\ $$
","comment":{"@type":"Comment","text":" Find the area of the triangles under the respective functions and then determine their difference to get the area. "},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$8$$","position":0},{"@type":"Answer","encodingFormat":"text/html","text":" $$4$$","position":2},{"@type":"Answer","encodingFormat":"text/html","text":" $$2$$","position":3}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$6$$","position":1,"answerExplanation":{"@type":"Comment","text":"The triangle under the function $$f\\left( x \\right)$$ will be the area of the triangle $$\\Delta AOD$$ that is, $$\\\\ \\Rightarrow {{A}_{1}}=\\dfrac{1}{2}\\times base\\times height \\\\ \\Rightarrow {{A}_{1}}=\\dfrac{1}{2}\\times 4\\times 4=8 \\\\ $$ The triangle under the function $$g\\left( x \\right)$$ will be the area of the triangle $$\\Delta BOC$$ that is, $$ \\Rightarrow {{A}_{2}}=\\dfrac{1}{2}\\times base\\times height \\\\ \\Rightarrow {{A}_{2}}=\\dfrac{1}{2}\\times 2\\times 2=2 \\\\ $$ $$\\therefore $$ The required area is, $$ \\\\ \\Rightarrow A={{A}_{1}}-{{A}_{2}} \\\\ \\Rightarrow A=8-2=6 \\\\ $$ $$\\therefore $$Area of the shaded area is $$6$$.","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","educationalLevel":"beginner","name":"Translating functions Quiz 1","text":" Find the point of intersection between $$f\\left( x \\right)={{x}^{2}}-\\text{5}$$ and the curve when $$f\\left( x \\right)$$ is translated three to the left.","comment":{"@type":"Comment","text":" The point of intersection between the functions can be determined by equating the functions."},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\left( -1.7,-2.67 \\right)$$","position":1},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\left( -1.5,-1.07 \\right)$$","position":2},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\left( -1.7,-1.54 \\right)$$","position":3}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\left( -1.5,-2.75 \\right)$$","position":0,"answerExplanation":{"@type":"Comment","text":" The given function is, $$f\\left( x \\right)={{x}^{2}}-5$$ $$ \\\\ $$ After translating it 3 units to the left we get the function, $$g\\left( x \\right)={{\\left( x+3 \\right)}^{2}}-5$$ $$ \\\\ $$ Point of intersection between them will be, $${{x}^{2}}-5={{\\left( x+3 \\right)}^{2}}-5$$ $$ \\\\ {{x}^{2}}-5={{x}^{2}}+6x+9-5 \\\\ {{x}^{2}}+6x+9-5-{{x}^{2}}+5=0 \\\\ 6x=-9 \\\\ x=\\dfrac{-9}{6}=\\dfrac{-3}{2} \\\\ \\therefore x=-1.5 \\\\ \\Rightarrow y={{x}^{2}}-5 \\\\ \\Rightarrow y={{\\left( -1.5 \\right)}^{2}}-5 \\\\ \\Rightarrow y=-2.75 \\\\ $$ $$\\therefore $$ The point of intersection will be $$\\left( -1.5,-2.75 \\right)$$. $$ \\\\ $$ That is the point will be,$$ \\\\ $$
","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","educationalLevel":"beginner","name":"Translating functions Quiz 1","text":" From the figure given below, what will be the extreme points of $$f\\left( x \\right)={{\\left( -3+\\sqrt{x} \\right)}^{2}}$$and $$g\\left( x \\right)$$ which is translated 2 units left respectively. $$ \\\\ $$
","comment":{"@type":"Comment","text":" Find the extreme points of the functions by determining the critical points."},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" Extreme points of $$f\\left( x \\right)={{\\left( -3+\\sqrt{x} \\right)}^{2}}\\ \\text{is 10, }g\\left( x \\right)={{\\left( -3+\\sqrt{\\left( x+2 \\right)} \\right)}^{2}}\\text{ is 8}\\text{.}$$","position":1},{"@type":"Answer","encodingFormat":"text/html","text":" Extreme points of $$f\\left( x \\right)={{\\left( -3+\\sqrt{x} \\right)}^{2}}\\ \\text{is 8, }g\\left( x \\right)={{\\left( -3+\\sqrt{\\left( x+2 \\right)} \\right)}^{2}}\\text{ is 6}\\text{.}$$","position":2},{"@type":"Answer","encodingFormat":"text/html","text":" Extreme points of $$f\\left( x \\right)={{\\left( -3+\\sqrt{x} \\right)}^{2}}\\ \\text{is 10, }g\\left( x \\right)={{\\left( -3+\\sqrt{\\left( x+2 \\right)} \\right)}^{2}}\\text{ is 6}\\text{.}$$","position":3}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" Extreme points of $$f\\left( x \\right)={{\\left( -3+\\sqrt{x} \\right)}^{2}}\\ \\text{is 9, }g\\left( x \\right)={{\\left( -3+\\sqrt{\\left( x+2 \\right)} \\right)}^{2}}\\text{ is 7}\\text{.}$$","position":0,"answerExplanation":{"@type":"Comment","text":" To find the extreme point of $$f\\left( x \\right)$$ we have, $$f\\left( x \\right)={{\\left( -3+\\sqrt{x} \\right)}^{2}}$$. $$ \\\\ $$ So the critical points of the function. $$ \\\\ \\Rightarrow f\\left( x \\right)={{\\left( -3+\\sqrt{x} \\right)}^{2}} \\\\ \\Rightarrow f'\\left( x \\right)=2\\left( -3+\\sqrt{x} \\right)\\times \\dfrac{1}{2\\sqrt{x}} \\\\ \\Rightarrow f'\\left( x \\right)=0 \\\\\\Rightarrow \\sqrt{x}-3=0 \\\\ \\Rightarrow \\sqrt{x}=3 \\\\\\Rightarrow x=9 \\\\ $$ To find the extreme point of $$g\\left( x \\right)$$we have, $$g\\left( x \\right)={{\\left( -3+\\sqrt{x+2} \\right)}^{2}}$$ $$ \\\\ $$ To find the critical points of the function.$$ \\\\ \\Rightarrow g\\left( x \\right)={{\\left( -3+\\sqrt{x+2} \\right)}^{2}} \\\\ \\Rightarrow g'\\left( x \\right)=2\\left( -3+\\sqrt{x+2} \\right)\\times \\dfrac{1}{2\\sqrt{x+2}} \\\\ \\Rightarrow g'\\left( x \\right)=0 \\\\ \\Rightarrow \\sqrt{x+2}-3=0 \\\\ \\Rightarrow \\sqrt{x+2}=3 \\\\ \\Rightarrow x=7 \\\\ $$ $$\\therefore $$ The extreme point of $$f\\left( x \\right)={{\\left( -3+\\sqrt{x} \\right)}^{2}}\\ \\text{is 9}$$ and $$g\\left( x \\right)={{\\left( -3+\\sqrt{\\left( x+2 \\right)} \\right)}^{2}}\\text{ is 7}$$.","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]}]}