","position":1},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\left( {2,2} \\right) \\\\ $$ ","position":2},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\left( {3,3} \\right) \\\\ $$
","position":3}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\left( {0,0} \\right) \\\\ $$
","position":0,"answerExplanation":{"@type":"Comment","text":"Given the function $$f(x)\\, = \\, - 2{x^2}$$. $$ \\\\ $$ Determining the values of the function for some different values of $$x$$ $$ \\\\ $$
$$ \\\\ $$ As per the obtained values, if we plot the graph and observe we can see that the vertex is $$\\left( {0,0} \\right)$$ $$ \\\\ $$
","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","educationalLevel":"beginner","name":"Graphs and functions Quiz 1","text":" The domain of $$\\sqrt {7x - 3} $$ is:","comment":{"@type":"Comment","text":" First find the domain for which the function is not defined and then subtract it from the set of real numbers."},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\left[ { - \\dfrac{3}{7},\\infty } \\right)$$","position":0},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\left( { - \\infty ,\\dfrac{3}{7}} \\right]$$","position":2},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\left( {\\dfrac{3}{7},\\infty } \\right)$$","position":3}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\left[ {\\dfrac{3}{7},\\infty } \\right)$$","position":1,"answerExplanation":{"@type":"Comment","text":"Given the function $$\\sqrt {7x - 3} $$ $$ \\\\ $$ We know that it is not defined when $$7x < 3$$ $$ \\\\ \\Rightarrow x < \\dfrac{3}{7} \\\\ $$ Thus, we can say that the given function is not defined in the interval $$\\left( { - \\infty ,\\dfrac{3}{7}} \\right)$$ $$ \\\\ $$ Therefore, it is define in: $$ \\\\ R - \\left( { - \\infty ,\\dfrac{3}{7}} \\right){\\text{ = }}\\left[ {\\dfrac{3}{7},\\infty } \\right)$$.","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","educationalLevel":"beginner","name":"Graphs and functions Quiz 1","text":" If $${f_q}\\left( x \\right) = \\dfrac{1}{2}\\left( {{{\\sin }^q}x + {{\\cos }^q}x} \\right)$$ where $$x \\in R$$ and $$q \\geqslant 1$$ , then the value of $${f_6}\\left( x \\right) + {f_4}\\left( x \\right)$$ is: ","comment":{"@type":"Comment","text":" First find ${f_6}\\left( x \\right)$ and ${f_4}\\left( x \\right)$ by putting the values of ${\\text{q}}$ as 6 and 4 respectively and then add both the expressions."},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\dfrac{5}{6} - {\\sin ^2}x.{\\cos ^2}x$$","position":0},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\dfrac{5}{{12}} + {\\sin ^2}x.{\\cos ^2}x$$","position":2},{"@type":"Answer","encodingFormat":"text/html","text":" $${\\sin ^2}x.{\\cos ^2}x - \\dfrac{5}{{12}}$$","position":3}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\dfrac{5}{{12}} - {\\sin ^2}x.{\\cos ^2}x$$","position":1,"answerExplanation":{"@type":"Comment","text":" Given the function: $$ \\\\ {f_q}\\left( x \\right) = \\dfrac{1}{q}\\left( {{{\\sin }^q}x + {{\\cos }^q}x} \\right) \\\\ \\Rightarrow {f_6}\\left( x \\right) \\\\ = \\dfrac{1}{6}\\left( {{{\\sin }^6}x + {{\\cos }^6}x} \\right) \\\\ = \\dfrac{1}{6}\\left( {{{\\left( {{{\\sin }^2}x + {{\\cos }^2}x} \\right)}^3} - 3{{\\sin }^2}x.{{\\cos }^2}x\\left( {{{\\sin }^2}x + {{\\cos }^2}x} \\right)} \\right) \\\\ = \\dfrac{1}{6}\\left( {{{\\left( 1 \\right)}^3} - 3{{\\sin }^2}x.{{\\cos }^2}x} \\right) \\\\ = \\dfrac{1}{6}\\left( {1 - 3{{\\sin }^2}x.{{\\cos }^2}x} \\right) \\\\ = \\dfrac{1}{6} - \\dfrac{1}{2}{\\sin ^2}x.{\\cos ^2}x & \\\\ {f_4}\\left( x \\right) \\\\ = \\dfrac{1}{4}\\left( {{{\\sin }^4}x + {{\\cos }^4}x} \\right) \\\\ = \\dfrac{1}{4}\\left( {{{\\left( {{{\\sin }^2}x + {{\\cos }^2}x} \\right)}^2} - 2{{\\sin }^2}x.{{\\cos }^2}x} \\right) \\\\ = \\dfrac{1}{4}\\left( {1 - 2{{\\sin }^2}x.{{\\cos }^2}x} \\right) \\\\ = \\dfrac{1}{4} - \\dfrac{1}{2}{\\sin ^2}x.{\\cos ^2}x \\\\ {f_6}\\left( x \\right) + {f_4}\\left( x \\right) \\\\ = \\dfrac{1}{6} - \\dfrac{1}{2}{\\sin ^2}x.{\\cos ^2}x + \\dfrac{1}{4} - \\dfrac{1}{2}{\\sin ^2}x.{\\cos ^2}x \\\\ = \\dfrac{1}{6} + \\dfrac{1}{4} - {\\sin ^2}x.{\\cos ^2}x \\\\ = \\dfrac{5}{{12}} - {\\sin ^2}x.{\\cos ^2}x \\\\ $$","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]}]}