","comment":{"@type":"Comment","text":" From the graph find the values on the $x-$axis at which the given function is not defined. Then remove those points from the real numbers to get the required domain."},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\mathbb{R}$$","position":0},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\mathbb{R}-\\left\\{ \\left( 2n+1 \\right)\\dfrac{\\pi }{2} \\right\\};n=0,1,2...$$","position":1},{"@type":"Answer","encodingFormat":"text/html","text":" None.","position":3}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\mathbb{R}-\\left\\{ n\\pi \\right\\};n=0,1,2...$$","position":2,"answerExplanation":{"@type":"Comment","text":" In the graph there are points at which the function given is not defined. Here, at every integral multiple of $$\\pi $$ the given graph is not defined. So, the domain of the given function is given by removing the integral multiples of $$\\pi $$ from the real numbers that is $$D=\\mathbb{R}-\\left\\{ n\\pi \\right\\}$$ where, $$n=0,1,2,...$$","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","educationalLevel":"beginner","name":"Domain and range of sec, csc, cot functions Quiz 1","text":" Find the domain of $$y=\\csc ({{x}^{2}}+5x+2)$$ ","comment":{"@type":"Comment","text":" First check the values at which the given function is not defined and then find the value of $‘x’$ at those values to remove them from the real numbers to get the required domain."},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\mathbb{R}-\\left\\{ \\dfrac{-5+\\sqrt{17+4n\\pi }}{2} \\right\\}$$","position":1},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\mathbb{R}-\\left\\{ \\dfrac{-5-\\sqrt{17+4n\\pi }}{2} \\right\\}$$","position":2},{"@type":"Answer","encodingFormat":"text/html","text":" None","position":3}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\mathbb{R}-\\left\\{ \\dfrac{-5\\pm \\sqrt{17+4n\\pi }}{2} \\right\\}$$","position":0,"answerExplanation":{"@type":"Comment","text":" $$\\Rightarrow y=\\csc \\left( {{x}^{2}}+5x+2 \\right) \\\\ \\Rightarrow y=\\dfrac{1}{\\sin \\left( {{x}^{2}}+5x+2 \\right)} \\\\ \\text{Assume that denominator is equal to zero that is} \\\\ \\Rightarrow \\sin \\left( {{x}^{2}}+5x+2 \\right)=0 \\\\ \\Rightarrow {{x}^{2}}+5x+2=n\\pi \\\\ \\Rightarrow {{x}^{2}}+5x+\\left( 2-n\\pi \\right)=0 \\\\ \\text{Where, }n=0,1,2… \\\\ \\text{Now, using the formula of roots of the quadratic equation then we get} \\\\ \\Rightarrow x=\\dfrac{-5\\pm \\sqrt{25-4\\left( 2-n\\pi \\right)}}{2} \\\\ \\Rightarrow x=\\dfrac{-5\\pm \\sqrt{17+4n\\pi }}{2} \\\\ \\text{Here, when }x=\\dfrac{-5\\pm \\sqrt{17+4n\\pi }}{2}\\text{ then the given function doesn’t hold.} \\\\ \\text{So, the domain of the function is given as } \\mathbb{R}-\\left\\{ \\dfrac{-5\\pm \\sqrt{17+4n\\pi }}{2} \\right\\}$$","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","educationalLevel":"beginner","name":"Domain and range of sec, csc, cot functions Quiz 1","text":" Find the value of $${{\\csc }^{-1}}\\left( \\csc \\left( \\dfrac{2\\pi }{3} \\right) \\right)$$ ","comment":{"@type":"Comment","text":" By using the domain and range of the given trigonometric ratios convert the inside angle to get the required value."},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\dfrac{2\\pi }{3}$$","position":1},{"@type":"Answer","encodingFormat":"text/html","text":" $$-\\dfrac{\\pi }{3}$$","position":2},{"@type":"Answer","encodingFormat":"text/html","text":" $$-\\dfrac{2\\pi }{3}$$","position":3}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\dfrac{\\pi }{3}$$","position":0,"answerExplanation":{"@type":"Comment","text":" $$\\text{Let us assume that the required value of given function as} \\\\ \\Rightarrow x={{\\csc }^{-1}}\\left( \\csc \\left( \\dfrac{2\\pi }{3} \\right) \\right) \\\\ \\text{The range of inverse of cosecant function is }\\left[ -\\dfrac{\\pi }{2} \\right.,\\left. 0 \\right)\\cup \\left( 0 \\right.,\\left. \\dfrac{\\pi }{2} \\right] \\\\ \\text{Now, convert the value inside the cosecant function} \\text{ in the range of inverse of cosecant function that is} \\\\ \\Rightarrow x={{\\csc }^{-1}}\\left( \\csc \\left( \\pi -\\dfrac{\\pi }{3} \\right) \\right) \\\\ \\Rightarrow x={{\\csc }^{-1}}\\left( \\csc \\left( \\dfrac{\\pi }{3} \\right) \\right) \\\\ \\Rightarrow x=\\dfrac{\\pi }{3} $$","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","educationalLevel":"beginner","name":"Domain and range of sec, csc, cot functions Quiz 1","text":" What will be the value of $$\\sec \\left( {{\\cot }^{-1}}\\left( -\\dfrac{2}{3} \\right) \\right)$$ , considering the domain and range of the trigonometric functions. ","comment":{"@type":"Comment","text":" First convert all the given trigonometric ratios into a single ratio. Then check the domain and range of the trigonometric ratio to remove the ratio if the value is in domain or range."},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\dfrac{\\sqrt{13}}{2}$$","position":0},{"@type":"Answer","encodingFormat":"text/html","text":" $$-\\dfrac{\\sqrt{13}}{2}$$","position":1},{"@type":"Answer","encodingFormat":"text/html","text":" None","position":3}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" Both (a) and (b) ","position":2,"answerExplanation":{"@type":"Comment","text":" $$\\text{Value of the given function is} \\\\ \\Rightarrow x=\\sec \\left( {{\\cot }^{-1}}\\left( -\\dfrac{2}{3} \\right) \\right) \\\\ \\text{Assume the given cotangent value as} \\\\ \\Rightarrow \\cot \\theta =-\\dfrac{2}{3} \\\\ \\text{Here, the value of cotangent function is negative} \\text{ so that the value of secant function is } \\text{either negative or positive.} \\\\ \\text{So, the value of secant function is} \\\\ \\Rightarrow \\sec \\theta =\\pm \\dfrac{\\sqrt{1+{{\\cot }^{2}}\\theta }}{\\left| \\cot \\theta \\right|} \\\\ \\Rightarrow \\sec \\theta =\\pm \\dfrac{\\sqrt{1+{{\\left( \\dfrac{-2}{3} \\right)}^{2}}}}{\\left| \\dfrac{2}{3} \\right|} \\\\ \\Rightarrow \\sec \\theta =\\pm \\dfrac{\\sqrt{13}}{2} \\\\ \\text{Now, the required value is} \\\\ \\Rightarrow x=\\sec \\left( {{\\sec }^{-1}}\\left( \\pm \\dfrac{\\sqrt{13}}{2} \\right) \\right) \\\\ \\text{W.K.T the domain of the inverse of secant function is }\\left( -\\infty ,\\left. -1 \\right]\\cup \\left[ 1, \\right. \\right.\\left. \\infty \\right)\\text{ which includes both }-\\dfrac{\\sqrt{13}}{2},\\dfrac{\\sqrt{13}}{2} \\\\ \\text{Hence, } x=\\pm \\dfrac{\\sqrt{13}}{2}$$","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]}]}