Evaluate the value of $\int\limits_0^\pi {{{\cos }^3}xdx} $.
A. 0
B. 1
C. -1
D. $\dfrac{1}{{2\sqrt 2 }}$
Answer
91.2k+ views
Hint: We will apply the definite integral property to rewrite the given definite integral and simplify it by using trigonometry ratios of supplementary angle. Add both of them to get the value of the given integral.
Formula Used:
$\int\limits_b^a {f\left( x \right)dx} = \int\limits_b^a {f\left( {a - x} \right)dx} $
Complete step by step solution:
Given integration $\int\limits_0^\pi {{{\cos }^3}xdx} $.
Let $I = \int\limits_0^\pi {{{\cos }^3}xdx} $ ……(i)
Apply the formula $\int\limits_b^a {f\left( x \right)dx} = \int\limits_b^a {f\left( {a - x} \right)dx} $
$I = \int\limits_0^\pi {{{\cos }^3}\left( {\pi - x} \right)dx} $
We know $\cos \left( {\pi - x} \right) = - \cos x$.
$I = - \int\limits_0^\pi {\cos xdx} $ ….(ii)
Add equation (i) and (ii)
$I + I = \int\limits_0^\pi {{{\cos }^3}xdx} - \int\limits_0^\pi {{{\cos }^3}xdx} $
$ \Rightarrow 2I = 0$
$ \Rightarrow I = 0$
Option ‘A’ is correct
Additional information:
If an integral has an upper limit and a lower limit, then the integration is known as a definite integral.
some properties of the definite integral:
$\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( t \right)dt} $
$\int_a^b {f\left( x \right)dx} = \int_b^a {f\left( x \right)dx} $
$\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( {a + b - x} \right)dx} $
$\int_0^a {f\left( x \right)dx} = \int_0^a {f\left( {a - x} \right)dx} $
Note: To solve the question, you need to know all properties of the definite integral. Since the lower limit of the given integration is zero, so we will apply $\int\limits_b^a {f\left( x \right)dx} = \int\limits_b^a {f\left( {a - x} \right)dx} $. Then we will use the supplementary angle to simplify it and add them.
Formula Used:
$\int\limits_b^a {f\left( x \right)dx} = \int\limits_b^a {f\left( {a - x} \right)dx} $
Complete step by step solution:
Given integration $\int\limits_0^\pi {{{\cos }^3}xdx} $.
Let $I = \int\limits_0^\pi {{{\cos }^3}xdx} $ ……(i)
Apply the formula $\int\limits_b^a {f\left( x \right)dx} = \int\limits_b^a {f\left( {a - x} \right)dx} $
$I = \int\limits_0^\pi {{{\cos }^3}\left( {\pi - x} \right)dx} $
We know $\cos \left( {\pi - x} \right) = - \cos x$.
$I = - \int\limits_0^\pi {\cos xdx} $ ….(ii)
Add equation (i) and (ii)
$I + I = \int\limits_0^\pi {{{\cos }^3}xdx} - \int\limits_0^\pi {{{\cos }^3}xdx} $
$ \Rightarrow 2I = 0$
$ \Rightarrow I = 0$
Option ‘A’ is correct
Additional information:
If an integral has an upper limit and a lower limit, then the integration is known as a definite integral.
some properties of the definite integral:
$\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( t \right)dt} $
$\int_a^b {f\left( x \right)dx} = \int_b^a {f\left( x \right)dx} $
$\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( {a + b - x} \right)dx} $
$\int_0^a {f\left( x \right)dx} = \int_0^a {f\left( {a - x} \right)dx} $
Note: To solve the question, you need to know all properties of the definite integral. Since the lower limit of the given integration is zero, so we will apply $\int\limits_b^a {f\left( x \right)dx} = \int\limits_b^a {f\left( {a - x} \right)dx} $. Then we will use the supplementary angle to simplify it and add them.
Last updated date: 06th Jun 2023
•
Total views: 91.2k
•
Views today: 1.47k
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Ray optics is valid when characteristic dimensions class 12 physics CBSE

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Alfred Wallace worked in A Galapagos Island B Australian class 12 biology CBSE

Imagine an atom made up of a proton and a hypothetical class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

How do you define least count for Vernier Calipers class 12 physics CBSE

Why is the cell called the structural and functional class 12 biology CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main
