Questions & Answers - Ask Your Doubts

Ask your doubts to Learn New things everyday

Filters

All

Board/TargetAll

SubjectAll

GradeLogarithms, Logarithms

TopicLatest Questions

Find the value of ${\log _3}(36) - {\log _3}(4)$?

How do I find the approximate value of \[{\log _5}\left( {20} \right)\] ?

What is ${\log _a}(\dfrac{1}{a})$?

How do you solve ${5^{2x - 1}} = {7^{2x}}$?

How do you evaluate ${\log _6}(2)?$

How do you find the exact value of: ${\log _8}32 + {\log _8}2$ ?

Find the value of \[x\] if \[{\log _{11}}\left( {2x - 1} \right) = 1 - {\log _{11}}\left( {x + 4} \right)\].

What is the logarithm of $100$ divided by $25$ ?

If $x = \log 2$ and $y = \log 3$, express $\log 75$ in terms of $x$ and $y$?

How do you solve $\log x+\log 7=\log 37$?

How do you solve ${\log _4}({x^2} - 9) - {\log _4}(x + 3) = 3$?

Which of the following is not true?

A. \[{\log _2}8 = 3\]

B. \[{\log _2}1 = 0\]

C. \[{\log _2}2 = 1\]

D. \[{\log _2}\dfrac{1}{8} = - 3\]

E. \[{\log _2}\left( { - 1} \right) = \dfrac{1}{2}\]

A. \[{\log _2}8 = 3\]

B. \[{\log _2}1 = 0\]

C. \[{\log _2}2 = 1\]

D. \[{\log _2}\dfrac{1}{8} = - 3\]

E. \[{\log _2}\left( { - 1} \right) = \dfrac{1}{2}\]

Prev

1

2

3

4

5

Next