Questions & Answers - Ask Your Doubts
Ask your doubts to Learn New things everyday
Filters
Latest Questions
Mathematics
Exponents and logarithms
What is \[\ln ({i^2})\]?
Mathematics
Exponents and logarithms
How do you simplify $\ln \left( {\ln {e^{{e^{10}}}}} \right)$?
Mathematics
Exponents and logarithms
How do you evaluate \[\log 0.003\]?

Mathematics
Exponents and logarithms
What is the value of the expression \[{\left( { - 3} \right)^4}\] ?
Mathematics
Exponents and logarithms
If \[\log 4 + 2\log 3\] is \[\log m\] ,then the value of \[m\] is equal to
(a) \[33\]
(b) \[31\]
(c) \[36\]
(d) \[38\]

Mathematics
Exponents and logarithms
Given that $a,b\in \left\{ 0,1,2,.....9 \right\}$ with $a+b\ne 0$ and ${{\left( a+\dfrac{b}{10} \right)}^{x}}={{\left( \dfrac{a}{10}+\dfrac{b}{100} \right)}^{y}}=1000$ .Then $\left( \dfrac{1}{x} \right)-\left( \dfrac{1}{y} \right)=$
1) $1$
2) $\dfrac{1}{2}$
3) $\dfrac{1}{3}$
4) $\dfrac{1}{4}$
Mathematics
Exponents and logarithms
If the equation ${2^x} + {4^y} = {2^y} + {4^x}$ is solved for y in terms of x, where $x < 0$ , then the sum of the solution will be:
$1.\,\,x{\log _2}\left( {1 - {2^x}} \right)$
$2.\,\,x + {\log _2}\left( {1 - {2^x}} \right)$
$3.\,\,{\log _2}\left( {1 - {2^x}} \right)$
$4.\,\,x{\log _2}\left( {{2^x} + 1} \right)$

Mathematics
Exponents and logarithms
If \[{\log _a}x,{\log _b}x,{\log _c}x\] are in A.P. where \[x \ne 1\] then show that \[{c^2} = {(ac)^{{{\log }_a}b}}\].

Mathematics
Exponents and logarithms
Solve: ${{\left( 100 \right)}_{2}}-{{\left( 10 \right)}_{2}}$
$\left( A \right)\text{ }{{\left( 11 \right)}_{2}}$
$\left( B \right)\text{ }{{\left( 01 \right)}_{2}}$
$\left( C \right)\text{ }{{\left( 10 \right)}_{2}}$
$\left( D \right)\text{ }{{\left( 101 \right)}_{2}}$
Mathematics
Exponents and logarithms
The number of digits in \[{20^{301}}\] ( given , \[{\log _{10}}2 = 0.3010\]) is
A.\[602\]
B.\[301\]
C.\[392\]
D.\[391\]

Mathematics
Exponents and logarithms
If $ y={{2}^{\dfrac{1}{{{\log }_{x}}4}}} $ , then $ x $ is equal to
A. $ y $
B. $ {{y}^{2}} $
C. $ {{y}^{3}} $
D. none of these

Mathematics
Exponents and logarithms
What is $ $ $ \dfrac{1}{{{{\log }_2}N}} + \dfrac{1}{{{{\log }_3}N}} + \dfrac{1}{{{{\log }_4}N}}... + \dfrac{1}{{{{\log }_{100}}N}} $ equal to $ (N \ne 1) $ ?

Prev
1
2
3
4
5
Next