Questions & Answers - Ask Your Doubts
Ask your doubts to Learn New things everyday
Filters
Latest Questions
CBSE
Mathematics
Eccentricity of an ellipse
If the distance between foci of an ellipse is equal to the length of the latus rectum, then the eccentricity is,
A) $\dfrac{1}{4}\left( {\sqrt 5 - 1} \right)$
B) $\dfrac{1}{2}\left( {\sqrt 5 + 1} \right)$
C) $\dfrac{1}{2}\left( {\sqrt 5 - 1} \right)$
D) $\dfrac{1}{4}\left( {\sqrt 5 + 1} \right)$

CBSE
Mathematics
Eccentricity of an ellipse
If the eccentricity \[{e_1}\] is of the ellipse \[\dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{{25}} = 1\] and \[{e_2}\] is the eccentricity of the hyperbola passing through the foci of the ellipse and \[{e_1} \times {e_2} = 1\], then the equation of the hyperbola. Is
A). \[\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{{16}} = 1\]
B). \[\dfrac{{{x^2}}}{{16}} - \dfrac{{{y^2}}}{9} = - 1\]
C). \[\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{{25}} = 1\]
D). None of these

CBSE
Mathematics
Eccentricity of an ellipse
Eccentricity of the ellipse ${{x}^{2}}+2{{y}^{2}}-2x+3y+2=0$ is:
1. $\dfrac{1}{\sqrt{2}}$
2. $\dfrac{1}{2}$
3. $\dfrac{1}{2\sqrt{2}}$
4. $\dfrac{1}{\sqrt{3}}$

CBSE
Mathematics
Eccentricity of an ellipse
An ellipse has eccentricity \[\dfrac{1}{2}\] and one focus at the point \[P\left( \dfrac{1}{2},1 \right)\]. Its one directrix is the common tangent nearer to the point \[P\] to the circle \[{{x}^{2}}+{{y}^{2}}=1\] and the hyperbola \[{{x}^{2}}-{{y}^{2}}=1\] . The equation of the ellipse in the standard form is
A) \[\dfrac{{{\left( x-\dfrac{1}{3} \right)}^{2}}}{\dfrac{1}{9}}+\dfrac{{{\left( y-1 \right)}^{2}}}{\dfrac{1}{12}}=1\]
B) \[\dfrac{{{\left( x-\dfrac{1}{3} \right)}^{2}}}{\dfrac{1}{9}}+\dfrac{{{\left( y+1 \right)}^{2}}}{\dfrac{1}{12}}=1\]
C) \[\dfrac{{{\left( x-\dfrac{1}{3} \right)}^{2}}}{\dfrac{1}{9}}-\dfrac{{{\left( y-1 \right)}^{2}}}{\dfrac{1}{12}}=1\]
D) \[\dfrac{{{\left( x-\dfrac{1}{3} \right)}^{2}}}{\dfrac{1}{9}}-\dfrac{{{\left( y+1 \right)}^{2}}}{\dfrac{1}{12}}=1\]
CBSE
Mathematics
Eccentricity of an ellipse
S and T are the foci of an ellipse and \[B\]is the endpoint of the minor axis. If \[STB\] is an equilateral triangle, then the eccentricity of the ellipse is:
1. \[\dfrac{1}{4}\]
2. \[\dfrac{1}{3}\]
3. \[\dfrac{1}{2}\]
4. \[\dfrac{2}{3}\]
CBSE
Mathematics
Eccentricity of an ellipse
The equation of the ellipse whose equation of directrix is\[3x + 4y - 5 = 0\], coordinates of the focus are\[\left( {1,2} \right)\]and the eccentricity is \[\dfrac{1}{2}\]is\[91{x^2} + 84{y^2} - 24xy - 170x - 360y + 475 = 0\].
A. True
B. False

CBSE
Mathematics
Eccentricity of an ellipse
The length of sub tangent corresponding to the point $\left( {3,\dfrac{{12}}{5}} \right)$ on the ellipse is $\dfrac{{16}}{3}$. Then the eccentricity of the ellipse is:
(A) $\dfrac{4}{5}$
(B) $\dfrac{2}{3}$
(C) $\dfrac{1}{5}$
(D) $\dfrac{3}{5}$
CBSE
Mathematics
Eccentricity of an ellipse
The ends of major axis of an ellipse are \[(5,0);(-5,0)\] and one of the foci lies on $3x-5y-9=0$, then the eccentricity of the ellipse is: -
$\begin{align}
  & a)\,\dfrac{2}{3} \\
 & b)\,\dfrac{3}{5} \\
 & c)\,\dfrac{4}{5} \\
 & d)\,\dfrac{1}{3} \\
\end{align}$
CBSE
Mathematics
Eccentricity of an ellipse
An ellipse has eccentricity \[\dfrac{1}{2}\] and one focus at the point \[P\left( {\dfrac{1}{2},1} \right)\]. Its one directrix is the common tangent, nearer to the point P, to the circle \[{x^2} + {y^2} = 1\] and hyperbola \[{x^2} - {y^2} = 1\]. Find the equation of the ellipse in standard form.
CBSE
Mathematics
Eccentricity of an ellipse
The orbit of the earth is an ellipse with eccentricity $\dfrac{1}{{60}}$ with Sun at one focus, the major axis being approximately $186 \times 1{0^6}\;miles$ in length. The shortest and longest distance of the earth from the Sun is
A.$9145 \times {10^4}\;{\text{miles}}$, $9455 \times {10^4}\;{\text{miles}}$
B.$9147 \times {10^4}\;{\text{miles}}$, $9457 \times {10^4}\;{\text{miles}}$
C.$9145 \times {10^6}\;{\text{miles}}$, $9455 \times {10^6}\;{\text{miles}}$
D.None of these
CBSE
Mathematics
Eccentricity of an ellipse
An ellipse has OB as semi-minor axis, F and F’ its foci and the \[\angle FBF'\] is a right angle. Then, the eccentricity of the ellipse is
(A) \[\dfrac{1}{\sqrt{3}}\]
(B) \[\dfrac{1}{4}\]
(C) \[\dfrac{1}{2}\]
(D) \[\dfrac{1}{\sqrt{2}}\]
CBSE
Mathematics
Eccentricity of an ellipse
Write the eccentricity of the ellipse $9{x^2} + 5{y^2} - 18x - 2y - 16 = 0$.

Prev
1
2
3
Next